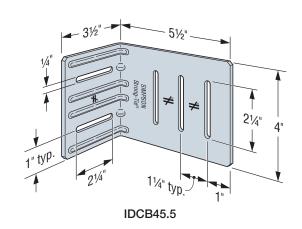
IDCB Drift-Clip Bypass Framing Connector

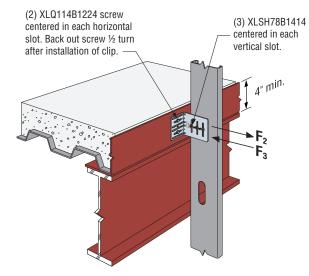
The IDCB drift-clip connector is used to secure bypass stud framing to the edge of a slab. The connector will accommodate 1" of lateral drift in each direction and 1" of upward and downward vertical deflection. Tested load values are provided for anchorage to a steel-edge angle using #12 x 1 ¼" Strong-Drive® XL Large-Head Metal screws.

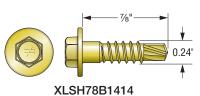
Features:

- Horizontal embossments and corner gussets optimize performance in the F₂ load direction
- Precision-manufactured shouldered screws provided with the IDCB connector are designed to prevent overdriving and to ensure that the clip functions properly
- Simpson Strong-Tie® No-Equal® stamps mark the center of the slots to help ensure correct shouldered screw and anchor placement

Material: 97 mil (12 ga.), 50 ksi Coating: Galvanized (G90)

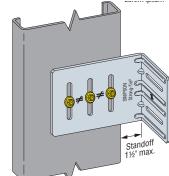

Installation:


- Use the specified type and number of fasteners and anchors.
- In the vertical slots, use the specified number of #14 shouldered screws (included) for attachment to the stud. Install screws to align with the No-Equal stamp.
- For attachment to a minimum 1/6"- and maximum 1/2"-thick steel edge angle, use Simpson Strong-Tie Strong-Drive XL Large-Head Metal screws (XLQ114B1224). Use one screw centered in each horizontal slot. Install screws to align with the No-Equal stamp and back out 1/2 turn.
- For fastener installation into steel backed by concrete, predrilling of both the steel and the concrete may be required. For predrilling, use a maximum %6"-diameter drill bit.


Codes: See p. 13 for Code Reference Key Chart

Ordering Information:

IDCB45.5-KT25 contains (25) IDCB45.5 connectors and (83) XLSH78B1414 #14 shouldered screws



#14 Shouldered Screw for Attachment to Stud Framing (included)

XLQ114B1224 Screw for Anchorage to Steel Edge Angle (sold separately)

Standoff Distance

IDCB45.5 Connector Loads (lb.)

Model No.	No. of #14 Shouldered Screws ¹	No. of #12 XLQ Screw Anchors ²	Load Direction	Stud Thickness mil (ga.)	Strength ³ (lb.)		Service Limit ³ (lb.)		Code
					ASD	LRFD	1/8" Deformation	3/16" Deformation	Ref.
IDCB45.5	3	2	F ₂ and F ₃	33 mil (20 ga.)	600	900	410	650	_
				43 mil (18 ga.)	680	1,060	455	695	
				54 mil (16 ga.)	760	1,220	500	745	

- 1. #14 x 7/6" shouldered screw (model no. "XLSH78B1414") provided with the clips are ASTM C1513 compliant.
- 2. For additional information on the #12 XL screw (model no. "XLQ114B1224") refer to strongtie.com.
- 3. The capacity of the connection will be the minimum of Strength Load and applicable Service Limit Load as determined by the designer.

^{4.} For additional important information, see General Information and Notes on p. 26.