

## **Submittal Information**

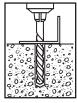
## Trubolt+ Seismic Wedge



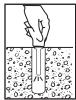
## **SPECIFIED FOR ANCHORAGE** INTO CONCRETE

2009 IBC Compliant Trubolt+ seismic wedge anchors consist of a high-strength threaded

stud body, expansion clip, nut and washer. Anchor bodies are made of plated carbon steel. The expansion clip consists of a split cylindrical ring with undercutting grooves.


The exposed end of the anchor is stamped to identify anchor length. Stampings should be preserved during installation for any subsequent embedment verification.

Use carbide tipped hammer drill bits made in accordance with ANSI B212.15-1994 to install anchors.


Anchors are tested to ACI 355.2 and ICC-ES AC193. Anchors are listed by the following agencies as required by the local building code: ICC-ES and City of Los Angeles.

See pages 46-47 for performance values in accordance to 2006 IBC.

## INSTALLATION STEPS



**1.** Select a carbide drill bit with a diameter equal to the anchor diameter. Drill hole to any depth exceeding the desired embedment. See chart for minimum recommended embedment.



**2.** Clean hole or continue drilling additional depth to accommodate drill fines.



**3.** Assemble washer and nut, leaving nut flush with end of anchor to protect threads. Drive anchor through material to be fastened until washer is flush to surface of material.



**4.** Expand anchor by tightening nut 3-5 turns past the hand tight position, or to the specified torque requirement.

### APPROVALS/LISTINGS



ICC Evaluation Service, Inc. # ESR-2427

- -Category 1 performance rating
- -2006 IBC and 2009 IBC compliant
- -Meets ACI 318 ductility requirements
- -Tested in accordance with ACI 355.2 and ICC-ES AC193
- -Listed for use in seismic zones A, B, C, D, E, & F
- -3/8", 1/2", 5/8" & 3/4" diameter anchors listed in ESR-2427

City of Los Angeles - #RR25867 Florida Building Code FL#14419.2 Patents US 7,811,037 B2 and US 7,744,320 B2

#### **LENGTH INDICATION CODE \***

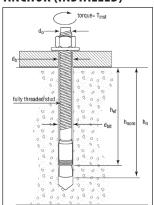
| CODE | LENGTH    | OF ANCHOR       | CODE | LENGTH OF ANCHOR |                 |  |  |
|------|-----------|-----------------|------|------------------|-----------------|--|--|
| A    | 1-1/2 < 2 | (38.1 < 50.8)   | K    | 6-1/2 < 7        | (165.1 < 177.8) |  |  |
| В    | 2 < 2-1/2 | (50.8 < 63.5)   | L    | 7 < 7-1/2        | (177.8 < 190.5) |  |  |
| (    | 2-1/2 < 3 | (63.5 < 76.2)   | М    | 7-1/2 < 8        | (190.5 < 203.2) |  |  |
| D    | 3 < 3-1/2 | (76.2 < 88.9)   | N    | 8 < 8-1/2        | (203.2 < 215.9) |  |  |
| E    | 3-1/2 < 4 | (88.9 < 101.6)  | 0    | 8-1/2 < 9        | (215.9 < 228.6) |  |  |
| F    | 4 < 4-1/2 | (101.6 < 114.3) | Р    | 9 < 9-1/2        | (228.6 < 241.3) |  |  |
| G    | 4-1/2 < 5 | (114.3 < 127.0) | Q    | 9-1/2 < 10       | (241.3 < 254.0) |  |  |
| Н    | 5 < 5-1/2 | (127.0 < 139.7) | R    | 10 < 11          | (254.0 < 279.4) |  |  |
|      | 5-1/2 < 6 | (139.7 < 152.4) | S    | 11 < 12          | (279.4 < 304.8) |  |  |
| J    | 6 < 6-1/2 | (152.4 < 165.1) | T    | 12 < 13          | (304.8 < 330.2) |  |  |

<sup>\*</sup>Located on top of anchor for easy inspection.



## Trubolt + & OVERHEAD Trubolt +

## Strength Design Performance values in accordance to 2006 and 2009 IBC


## ITW RED HEAD TRUBOLT+ and OVERHEAD TRUBOLT+ EDGE ANCHOR DESIGN INFORMATION TESTED TO ICC-ES AC 193 AND ACI 355.2, IN ACCORDANCE WITH 2006 and 2009 IBC

### TRUBOLT+ AND OVERHEAD TRUBOLT+ WEDGE ANCHOR DESIGN INFORMATION<sup>1</sup>

| Characteristic                                                                           | Symbol              | Units            | Nominal Anchor Diameter (inch) <sup>4</sup> |              |                |             |                   |          |         |             |          |          |  |
|------------------------------------------------------------------------------------------|---------------------|------------------|---------------------------------------------|--------------|----------------|-------------|-------------------|----------|---------|-------------|----------|----------|--|
| Characteristic                                                                           | Syllibol            | UIIILS           | 3/8"                                        |              |                | 1           | /2"               | 5/       | 8"      | 3/4"        |          |          |  |
| Anchor category                                                                          | 1, 2 or 3           | _                | 1                                           |              |                |             | 1                 |          | 1       |             | 1        |          |  |
| Minimum effective embedment depth                                                        | h <sub>ef</sub>     | in               | 1-5                                         | 5/8          | 2              |             | 3-                | 3-1/4    |         | 2-3/4 4-1/4 |          | 3-3/4    |  |
| Minimum concrete member thickness                                                        | h <sub>min</sub>    | in               | 4                                           | 5            | 4              | 6           | 6                 | 8        | 6       | 6-1/4       | 7        | 8        |  |
| Critical edge distance                                                                   | c <sub>ac</sub>     | in               | 5                                           | 3            | 6              | 6           | 7-1/2             | 6        | 7-1/2   | 6-1/2       | 12       | 10       |  |
|                                                                                          |                     | D                | ata for Ste                                 | el Strength  | s – Tension    | and Shear   |                   |          |         |             |          |          |  |
| Minimum specified yield strength                                                         | f <sub>y</sub>      | psi              | 60,                                         | 000          |                | 55          | ,000              |          | 55,     | 000         | 55,000   |          |  |
| Minimum specified ultimate strength                                                      | f <sub>uta</sub>    | psi              | 75,                                         | 000          |                | 75          | ,000              |          | 75,000  |             | 75,000   |          |  |
| ffective tensile stress area (neck)                                                      | A <sub>se</sub>     | in <sup>2</sup>  | 0.0                                         | )56          |                | 0.          | 119               |          | 0.1     | 0.183       |          | 0.266    |  |
| Effective tensile stress area (thread)                                                   | $A_{se}$            | in <sup>2</sup>  | 0.0                                         | )75          |                | 0.          | 142               |          | 0.2     | 0.217       |          | 0.332    |  |
| Steel strength in tension                                                                | $N_{sa}$            | lbf              | 4,2                                         | 200          |                | 8,          | 925               |          | 13,     | 725         | 19,950   |          |  |
| Steel strength in shear, uncracked or cracked concrete <sup>6</sup>                      | $v_{sa}$            | lbf              | 1,8                                         | 330          |                | 5,          | 175               |          | 8,9     | 8,955       |          | 14,970   |  |
| Steel strength in shear — seismic loads                                                  | $v_{eq}$            | lbf              | 1,5                                         | 545          | 5,175          |             | 8,955             |          | 11,775  |             |          |          |  |
| Strength reduction factor <i>f</i> for tension, steel failure modes <sup>2</sup>         |                     |                  | 0.75                                        |              | 0.75           |             |                   | 0.75     |         | 0.75        |          |          |  |
| Strength reduction factor $f$ for shear, steel failure modes $^{2}$                      |                     | 0.               | 60                                          | 0.65         |                |             | 0.65              |          | 0.65    |             |          |          |  |
|                                                                                          | Data for            | r Concret        | e Breakout                                  | Concrete P   | ryout Stren    | gths in Ter | nsion and Sh      | iear     |         |             |          |          |  |
| Effectiveness factor — uncracked concrete                                                | k <sub>uncr</sub>   | _                | 2                                           | 4            | 24             |             |                   | 24       |         | 24          |          |          |  |
| Effectiveness factor — cracked concrete                                                  | k <sub>cr</sub>     | _                | 1                                           | 7            | 17             |             |                   | 17       |         | 1           | 7        |          |  |
| Modification factor for cracked and uncracked concrete <sup>3</sup>                      | Ψς,Ν                | _                | 1                                           | .0           |                | 1           | .0                |          | 1.0     |             | 1.       | .0       |  |
| Coefficient for pryout strength                                                          | k <sub>cp</sub>     | _                | 1                                           | .0           | 1              | .0          | 2                 | .0       | 2.0     |             | 2.0      |          |  |
| oad-bearing length of anchor                                                             | l <sub>e</sub>      | in               | 1.6                                         | 525          | 2              | .0          | 3.                | 25       | 2.75    | 4.25        | 3.       | 75       |  |
| Strength reduction factor φ for tension, concrete failure m                              | odes, Condition     | n B <sup>2</sup> | 0.65                                        |              | 0.65           |             |                   |          | 0.      | 65          | 0.0      | 65       |  |
| Strength reduction factor $\phi$ for shear, concrete failure mo                          | des, Condition      | B <sup>2</sup>   | 0.                                          | 70           | 0.70           |             |                   | 0.70     |         | 0.          | 70       |          |  |
|                                                                                          |                     |                  | Da                                          | ta for Pullo | ut Strength    | ıs          |                   |          |         |             |          |          |  |
| Pullout strength, uncracked concrete                                                     | N <sub>p,uncr</sub> | lbf              | See Foo                                     | otnote 5     | See Foo        | otnote 5    | 6,5               | 540      | 5,430   | 8,900       | See Foo  | otnote 5 |  |
| Pullout strength, cracked concrete                                                       | N <sub>p,cr</sub>   | lbf              | See Foo                                     | otnote 5     | See Footnote 5 |             | See Foo           | otnote 5 | See Foo | otnote 5    |          |          |  |
| Pullout strength for seismic loads                                                       | N <sub>eq</sub>     | lbf              | See Foo                                     | otnote 5     | See Footnote 5 |             | See<br>Footnote 5 | 6,715    | See Foo | otnote 5    |          |          |  |
| Strength reduction factor f for tension, pullout failure modes, Condition B <sup>2</sup> |                     | n B <sup>2</sup> | See Foo                                     | otnote 5     | 0.65           |             |                   | 0.65     |         | See Foo     | otnote 5 |          |  |
|                                                                                          |                     |                  | А                                           | dditional A  | nchor Data     |             |                   |          | _       |             |          |          |  |
| Axial stiffness in service load range in uncracked concrete                              | b <sub>uncr</sub>   | lbf/in           | 100                                         | ,000         | 250,000        |             |                   |          | 250     | ,000        | 250      | ,000     |  |
| Axial stiffness in service load range in cracked concrete                                | b <sub>cr</sub>     | lbf/in           | 40,                                         | 000          | 20,000         |             | 20,000            |          | 20,     | 000         |          |          |  |

- 1 The 1/2", 5/8" and 3/4" diameter Trubolt + Wedge Anchors are ductile steel elements as defined by ACI 318 D.1. The 3/8" diameter Trubolt + is considered ductile under tension loading and brittle under shear loading.
- 2 All values of φ apply to the load combinations of IBC Section 1605.2, ACI 318 Section 9.2 or UBC Section 1612.2. If the load combinations of Appendix C or UBC Section 1909.2 are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.5. For installations where reinforcement that complies with ACI 318 Appendix D requirements for Condition A is present, the appropriate  $\phi$  factor must be determined in accordance with ACI 318 D.4.4.
- For all design cases  $\Psi_{C,N} = 1.0$ . The appropriate effectiveness factor for cracked concrete ( $k_{Cr}$ ) or uncracked concrete ( $k_{UNCr}$ ) must be used.
- <sup>4</sup> The actual diameter for the 3/8" diameter anchor is 0.361" for the 5/8" diameter anchor is 0.615" and the 3/4" diameter anchor is 0.7482".
- <sup>5</sup> Anchor pullout strength does not control anchor design. Determine steel and concrete capacity only.
- <sup>6</sup> Steel strength in shear values are based on test results per ACI 355.2, Section 9.4 and must be used for design.

## TRUBOLT + WEDGE ANCHOR (INSTALLED)



#### TRUBOLT + AND OVERHEAD TRUBOLT + WEDGE INSTALLATION INFORMATION

| Parameter                                      | Notation          | Units        | Nominal Achor Diameter |       |             |       |       | er (inch | )     |        |       |    |
|------------------------------------------------|-------------------|--------------|------------------------|-------|-------------|-------|-------|----------|-------|--------|-------|----|
|                                                | 3/8               |              | /8                     | 1/2   |             |       |       | 5/8      |       | 3/4    |       |    |
| Anchor outer diameter                          | d <sub>0</sub>    | inches 0.361 |                        | 861   | 0.5         |       |       | 0.615    |       | 0.7482 |       |    |
| Nominal carbide bit diameter                   | d <sub>bit</sub>  | inches       | 3/8                    |       | 1/2         |       |       |          | 5/8   |        | 3/4   |    |
| Effective embedment depth                      | h <sub>ef</sub>   | inches       | 1-5/8                  |       | 2 3-1/4     |       | 2-3/4 | 4-1/4    | 3-3/4 |        |       |    |
| Minimum anchor embedment depth                 | h <sub>nom</sub>  | inches 2     |                        | 2-1/2 |             | 3-3/4 |       | 3-1/4    | 4-3/4 | 4-3    | 3/8   |    |
| Minimum hole depth <sup>1</sup>                | h <sub>o</sub>    | inches       | hes 2-1/4              |       | 2-3/4       |       | 4     |          | 3-1/2 | 5      | 4-5/8 |    |
| Minimum concrete member thickness <sup>1</sup> | h <sub>min</sub>  | inches       | 4                      | 5     | 4           | 6     | 6     | 8        | 6     | 6-1/4  | 7     | 8  |
| Critical edge distance <sup>1</sup>            | c <sub>ac</sub>   | ln.          | 5                      | 3     | 6           | 6     | 7-1/2 | 6        | 7-1/2 | 6-1/2  | 12    | 10 |
| Minimum anchor spacing <sup>1</sup>            | s <sub>min</sub>  | ln.          | 3-1/2                  | 2-1/2 | 6           | 5-3/4 | 4     | 5-3/4    | 8     | 6      | 6     | 6  |
| Minimum edge distance <sup>1</sup>             | c <sub>min</sub>  | ln.          | 3                      |       | 6           |       |       | 7-1/2    | 5     | 7-1/2  | 7-1/2 |    |
| Minimum overall anchor length                  | 1                 | inches 2-1/2 |                        | 1/2   | 3-3/4 4-1/2 |       | 1/2   | 4-1/4    | 6     | 5-1/2  |       |    |
| Installation torque                            | T <sub>inst</sub> | ft-lb        | 30                     |       | 45          |       |       | 90       |       | 110    |       |    |
| Minimum diameter of hole in fastened part      | d <sub>h</sub>    | inches       | 1/2                    |       | 5/8         |       |       | 3/4      |       | 7/8    |       |    |

For SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 N-m.

# Trubolt+ & OVERHEAD Trubolt+ Strength Design Performance values in accordance to 2006 and 2009 IBC

## TRUBOLT + AND OVERHEAD TRUBOLT + WEDGE ANCHOR ALLOWABLE STRESS DESIGN (ASD) VALUES FOR ILLUSTRATIVE PURPOSES

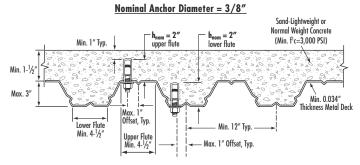
| Anchor Notation | Anchor Embedment Depth     | Effective Embedment Depth | Allowable Tension Load |  |  |
|-----------------|----------------------------|---------------------------|------------------------|--|--|
|                 | (inches), h <sub>nom</sub> | (inches), h <sub>ef</sub> | (lbs)                  |  |  |
| 3/8             | 2                          | 1-5/8                     | 1,090                  |  |  |
| 1/2             | 2-1/2                      | 2                         | 1,490                  |  |  |
| 1/2             | 3-3/4                      | 3-1/4                     | 2,870                  |  |  |
| F /0            | 3-1/4                      | 2-3/4                     | 2,385                  |  |  |
| 5/8             | 4-3/4                      | 4-1/4                     | 3,910                  |  |  |
| 3/4             | 4-3/8                      | 3-3/4                     | 3,825                  |  |  |

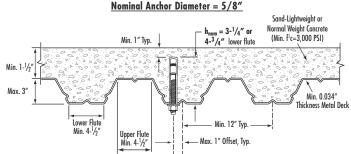
For SI: 1 inch = 25.4 mm, 1 ft- $\overline{lb}$  = 4.45N.

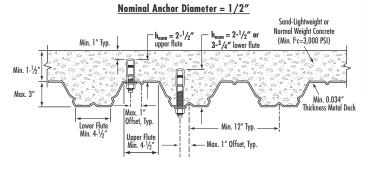
**Design Assumptions:** 

1 Single anchor with static shear load only.

- <sup>2</sup> Load combinations from 2006 IBC, Sections 1605.2.1 and 1605.3.1 (no seismic loading).
- <sup>3</sup> Thirty percent dead load and 70 percent live load, controlling load combination 1.2D + 1.6L
- <sup>4</sup> Calculation of weighted average: 1.2D + 1.6L = 1.2(0.3) + 1.6(0.7) = 1.48


<sup>5</sup> Values do not include edge distance or spacing reductions.


# ITW RED HEAD TRUBOLT+ and *OVERHEAD* TRUBOLT+ WEDGE ANCHOR DESIGN INFORMATION FOR INSTALLATION IN THE SOFFIT OF CONCRETE FILL ON METAL DECK FLOOR AND ROOF ASSEMBLIES


## TRUBOLT+ AND OVERHEAD TRUBOLT+ WEDGE ANCHOR DESIGN INFORMATION

|                                                               | Symbol                      | Units | Nominal Anchor Diameter  |                      |                          |                          |                          |  |
|---------------------------------------------------------------|-----------------------------|-------|--------------------------|----------------------|--------------------------|--------------------------|--------------------------|--|
|                                                               |                             |       | 3/8"                     | 1/                   | 2"                       | 5/8"                     |                          |  |
| Characteristic                                                |                             |       | Upper /Lower             | Upper /Lower         | Lower Only               | Lower Only               | Lower Only               |  |
|                                                               |                             |       | h <sub>ef</sub> = 1-5/8" | h <sub>ef</sub> = 2" | h <sub>ef</sub> = 3-1/4" | h <sub>ef</sub> = 2-3/4" | h <sub>ef</sub> = 4-1/4" |  |
| Pullout strength, uncracked concrete over metal deck          | N <sub>p</sub> , deck, uncr | lbf   | 2,170                    | 2,515                | 5,285                    | 3,365                    | 6,005                    |  |
| Pullout strength, cracked concrete over metal deck            | N <sub>p</sub> , deck, cr   | lbf   | 1,650                    | 1,780                | 4,025                    | 2,405                    | 5,025                    |  |
| Reduction factor for pullout strength in tension, Condition B | ф                           |       | 0.65                     |                      |                          |                          |                          |  |
| Shear strength, uncracked concrete over metal deck            | Vp, deck, uncr              | lbf   | 1,640                    | 2,200                | 3,790                    | 2,890                    | 6,560                    |  |
| Reduction factor for steel strength in shear                  | ф                           |       | 0.60                     | 0.60 0.65            |                          |                          |                          |  |
| Anchor embedment depth                                        | h <sub>nom</sub>            | in    | 2.0                      | 2.5                  | 3.75                     | 3.25                     | 4.75                     |  |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N







