AT-3G[™] High-Strength Hybrid Acrylic Adhesive

AT-3G is a hybrid, acrylic-based adhesive for anchoring threaded rod and rebar into cracked and uncracked concrete. Ideal for cold weather and wet concrete applications, AT-3G dispenses easily and offers a fast curing time for same-day bolt up.

Features

Adhesive Anchors

- Excellent for use in cold weather conditions or applications where fast cure is required
- Recognized per ICC-ES AC308 for threaded rod and rebar anchoring, along with post-installed rebar development and splice length design provisions
- Conventional blow-brush-blow hole cleaning technique using a wire brush no power brushing required

Product Information

Mix Ratio/Type	10:1 hybrid acrylic
Mixed Color	Gray
Base Materials	Concrete — cracked and uncracked
Base Material Conditions	Dry, water-saturated, water-filled hole
Anchor Type	Threaded rod or rebar
Substrate Installation Temperature	23°F (–5°C) to 104°F (40°C)
In-Service Temperature Range	–40°F (–40°C) to 320°F (160°C)
Storage Temperature	41°F (5°C) and 77°F (25°C)
Shelf Life	18 months
Volatile Organic Compound (VOC)	41 g/L

Test Criteria

AT-3G has been tested in accordance with ICC-ES AC308, ACI 355.4 and applicable ASTM test methods.

Code Reports, Standards and Compliance

 Concrete — ICC-ES ESR-4057 (including post-installed rebar connections, City of LA and Florida Building Code), Florida FL15730.
ASTM C881 and AASHTO M235 — Types I/IV and II/V, Grade 3, Class B & C.
UL Certification — CDPH Standard Method v1.2.
NSF/ANSI/CAN 61 (216 in.² / 1,000 gal.).

Installation Instructions

Installation instructions are located at the following locations: pp. 48–51; product packaging; or **strongtie.com/at3g**.

• Hole cleaning brushes are located on p. 52.

AT-3G Adhesive Cartridge System

	Model No.	Capacity Ounces (cubic in.)	Cartridge Type	Carton Qty.	Dispensing Tool	Mixing Nozzle
	AT3G10⁴	9.4 (16.9)	Coaxial	6	CDT10S	
	AT3G30⁴	28 (50.5)	Side-by-side	5	ADT30S, ADTA30P or ADTA30CKT	AWINT9Q

1. Cartridge estimation guidelines are available at strongtie.com/softwareandwebapplications/category.

2. Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available at **strongtie.com**.

3. Use only Simpson Strong-Tie mixing nozzles in accordance with Simpson Strong-Tie instructions.

Modification or improper use of mixing nozzle may impair AT-3G adhesive performance. 4. One AMN19Q mixing nozzle and one nozzle extension are supplied with each cartridge.

5. Use of rodless pneumatic tools to dispense single-tube, coaxial adhesive cartridges is prohibited.

AT-3G Adhesive

AT-3G[™] High-Strength Hybrid Acrylic Adhesive

SIMPSO

Strong-Tie

AT-3G Cure Schedule

Base Materia	l Temperature	Gel Time	Cure Time
°F	۵°	(minutes)	(hr.)
23	-5	50	5
32	0	25	31⁄2
41	5	15	2
50	10	10	1
59	15	6	40 min.
68	20	3	30 min.
86	30	2	30 min.
104	40	2	30 min.

1. For water-saturated concrete, the cure times must be doubled.

- 2. Cartridge temperature must be between 41°F (5°C) and 104°F (40°C) at the time of installation.
- 3. For installation in temperatures below 23°F (-5°C), see p. 241 (Supplemental Section) for more information.

AT-3G Typical Properties

	Property	Class A (35°–40°F)	Class B (40°–60°F)	Class C (>60°F)	Test Method
Consistency	Non-sag Non-sag Non-s			ASTM C881	
Pond Strongth Clont Shoor	Hardened-to-Hardened Concrete, 2-Day Cure ¹	2,800 psi 2,800 psi 2,820		2,820 psi	
Dunu Strength, Sidni Shear	Hardened-to-Hardened Concrete, 14-Day Cure ¹	3,200 psi	3,100 psi	3,250 psi	ASTIVI COOZ
Compressive Yield Strength, 7	Z-Day Cure ²	10,300 psi	13,400 psi	15,000 psi	ASTM D695
Compressive Modulus, 7-Day	Cure ²	1,400,000 psi	1,550,000 psi	1,650,000 psi	ASTM D695
Heat Deflection Temperature,	7-Day Cure ³		ASTM D648		
Glass Transition Temperature,	7-Day Cure ³		ASTM E1640		
Decomposition Temperature, 2	24-Hour Cure ³		ASTM E2550		
Water Absorption, 24 Hours, 7	7-Day Cure ³		ASTM D570		
Shore D Hardness, 24-Hour C	Cure ³		ASTM D2240		
Linear Coefficient of Shrinkag	e, 7-Day Cure ³		ASTM D2566		
Coefficient of Thermal Expans	ion ³		$2.6 imes 10^{-5}$ in./in.°F		ASTM C531

1. Material and curing conditions: Class A at 35° ± 2°F, Class B at 40° ± 2°F, Class C at 60° ± 2°F.

2. Material and curing conditions: Class A at 0° ± 2°F, Class B at 40° ± 2°F, Class C at 60° ± 2°F.

3. Material and curing conditions: 73° \pm 2°F.

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

AT-3G Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete¹

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. $c_{ac} = h_{ef} (\tau_{k,uncr}/1, 160)^{0.4} \times [3.1 - 0.7(h/h_{ef})]$, where:

 $[h/h_{ef}] \le 2.4$

 $\tau_{k,uncr}$ = the characteristic bond strength in uncracked concrete, given in the tables that follow $\leq k_{uncr}((h_{ef} \times f_c)^{0.5}/(\pi \times d_a))$

- h = the member thickness (inches)
- h_{ef} = the embedment depth (inches)

LW

IBC

Lastanas

AT-3G[™] Design Information — Concrete

Strong-Tie

SIMPSON

AT-3G Tension Strength Design Data for Threaded Rod	d ^{1,8}
---	------------------

Charactoristic		Cumbal	Unite	Nominal Rod Diameter (in.)						
Characte	Insuc	Symbol	Units	3⁄/8	1⁄2	5⁄8	3⁄4	7⁄8	1	1¼
	Steel Streng	gth in Tens	n Tension							
Minimum Tensile Stress Area		A _{se}	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969
Tension Resistance of Steel — ASTM F155	4, Grade 36			4,495	8,230	13,110	19,400	26,780	35,130	56,210
Tension Resistance of Steel — ASTM F155	4, Grade 55			5,815	10,645	16,950	25,090	34,630	45,430	72,685
Tension Resistance of Steel — ASTM A193	, Grade B7 and ASTM F1554, Grade 105]		9,685	17,735	28,250	41,810	57,710	75,710	121,135
Tension Resistance of Steel — ASTM A449		N _{sa}	lb.	9,300	17,030	27,120	40,140	55,405	72,685	101,755
Tension Resistance of Steel — ASTM F593	CW (Types 304 and 316 Stainless Steel)			7,750	17,190	22,600	28,430	39,245	51,485	82,370
Tension Resistance of Steel — ASTM A193 (Types 304 and 316 Stainless Steel)	, Grade B8/B8M, Class 2B			7,365	13,480	21,470	31,780	43,860	57,540	92,065
Strength Reduction Factor for Tension — St	eel Failure	ϕ					0.75 ⁶			
	Concrete Breakout Strength in Te	ension (2,5	00 psi	≤ f' _C ≤ 8,0	000 psi)					
Effectiveness Factor for Cracked Concrete		K _{C,Cr}	_				17			
Effectiveness Factor for Uncracked Concrete)	k _{c,uncr}		24						
Strength Reduction Factor — Concrete Brea	akout Failure in Tension	ϕ	_	0.656						
	Bond Strength in Tension	(2,500 psi	≤ f' _C ≤	8,000 psi)7					
Minimum Embedment		h _{ef,min}	in.	23⁄8	2¾	31⁄8	31⁄2	31⁄2	4	5
Maximum Embedment		h _{ef,max}	in.	71⁄2	10	12½	15	17½	20	25
Temperatura Range Λ25	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	2,600	2,415	2,260	2,140	2,055	2,000	1,990
iomperature mange A	Characteristic Bond Strength in Cracked Concrete ⁹	τ _{k,cr}	psi	1,040	1,040	1,110	1,220	1,210	1,205	1,145
Temperature Range R ^{3,5}	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	2,265	2,100	1,970	1,865	1,785	1,740	1,730
remperature mange b	Characteristic Bond Strength in Cracked Concrete ⁹	$ au_{k,cr}$	psi	905	905	965	1,060	1,055	1,050	995
Tomporaturo Pango C45	Characteristic Bond Strength in Uncracked Concrete9	$ au_{k,uncr}$	psi	1,630	1,515	1,420	1,345	1,290	1,255	1,250
Temperature nange 6 %	Characteristic Bond Strength in Cracked Concrete9	$ au_{k,cr}$	psi	650	655	695	765	760	755	720
Anchor Category	Dry Concrete	—	_				1			
Strength Reduction Factor	Dry Concrete	ϕ_{dry}	_	- 0.656						
Anchor Category	Water-Saturated Concrete	_	_	2						
Strength Reduction Factor	Water-Saturated Concrete	$\phi_{\scriptscriptstyle WS}$	_	0.556						
Anchor Category	Water-Filled Hole	—	_	3						
Strength Reduction Factor	Water-Filled Hole	$\phi_{\scriptscriptstyle Wf}$	_				0.456			
Reduction Factor for Seismic Tension		$\alpha_{N,seis}$ 10					0.95			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. Temperature Range A: Maximum short-term temperature = 176°F, Maximum long-term temperature = 122°F.

3. Temperature Range B: Maximum short-term temperature = 248°F, Maximum long-term temperature = 161°F.

4. Temperature Range C: Maximum short-term temperature = 320°F, Maximum long-term temperature = 212°F.

5. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.

6. The tabulated value of φ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ.

7. Bond strength values shown are for normal-weight concrete having a compressive strength of $f'_c = 2,500$ psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of ($f'_c/2,500$)^{0.10}.

8. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

 Characteristic bond strength values are for sustained loads, including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond strengths may be increased by 23% for Temperature Range C.

10. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by a_{N,seis}.

AT-3G[™] Design Information — Concrete

SIMPS

IBC LW AT-3G Tension Strength Design Data for Rebar^{1,8} **Rebar Size** Characteristic Symbol Units #3 #4 #5 #6 #7 #8 #9 Steel Strength in Tension 1.00 Minimum Tensile Stress Area in.2 0.11 0.20 0.31 0.44 0.60 0.79 A_{se} Tension Resistance of Steel - ASTM A615 Grade 60 9,900 18,000 27,900 39,600 54,000 71,100 90,000 Tension Resistance of Steel — ASTM A706 Grade 60 8,800 16,000 24,800 35,200 48,000 63,200 80,000 N_{sa} lb. Tension Resistance of Steel — ASTM A615 Grade 40 6,600 12,000 18,600 26,400 Sizes not available Strength Reduction Factor for Tension — Steel Failure φ 0.656 ASTM A615 Grades 40 and 60 φ 0.756 Strength Reduction Factor for Tension — Steel Failure — ASTM A706 Concrete Breakout Strength in Tension (2,500 psi \leq f¹_C \leq 8,000 psi) Effectiveness Factor for Cracked Concrete 17 k_{c,cr} ____ 24 Effectiveness Factor for Uncracked Concrete k_{c,uncr} Strength Reduction Factor — Concrete Breakout Failure in Tension φ 0.65^{6} Bond Strength in Tension (2,500 psi \leq f¹_c \leq 8,000 psi)⁷ 31⁄8 31⁄2 31⁄2 4 41/2 Minimum Embedment in $2\frac{3}{8}$ 23/4 h_{ef,min} Maximum Embedment 71/2 10 121/2 15 171/2 20 221/2 h_{ef,max} in Characteristic Bond Strength $\tau_{\rm k,uncr}$ psi 2,200 2,100 2,030 1,970 1,920 1,880 1,845 in Uncracked Concrete9 Temperature Range A^{2,5} Characteristic Bond Strength $\tau_{k,cr}$ psi 1,090 1,055 1,130 1,170 1,175 1,155 1,140 in Cracked Concrete⁹ Characteristic Bond Strength 1,915 1,765 1,670 $\tau_{k.uncr}$ psi 1,830 1,715 1,635 1.615 in Uncracked Concrete⁹ Temperature Range B^{3,5} Characteristic Bond Strength $\tau_{k,cr}$ psi 945 915 980 1,015 1,020 1,005 995 in Cracked Concrete9 Characteristic Bond Strength $\tau_{k,uncr}$ psi 1,380 1,315 1,270 1,235 1205 1,180 1,155 in Uncracked Concrete Temperature Range C4,5 Characteristic Bond Strength $\tau_{k,cr}$ psi 680 660 705 735 735 725 715 in Cracked Concrete⁹ Anchor Category Drv Concrete 1 ϕ_{dry} 0.656 Strength Reduction Factor Dry Concrete 2 Anchor Category Water-Saturated Concrete ____ Strength Reduction Factor Water-Saturated Concrete ϕ_{WS} 0.55^{6} Anchor Category Water-Filled Hole 3 $\phi_{\scriptscriptstyle Wf}$ Water-Filled Hole 0.456 Strength Reduction Factor ____ Reduction Factor for Seismic Tension 0.95 0.95 1.00 1.00 1.00 1.00 1.00 $\alpha_{N,seis}$ 10

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. Temperature Range A: Maximum short-term temperature = 176°F, Maximum long-term temperature = 122°F.

3. Temperature Range B: Maximum short-term temperature = 248°F, Maximum long-term temperature = 161°F.

4. Temperature Range C: Maximum short-term temperature = 320°F, Maximum long-term temperature = 212°F.

5. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.

6. The tabulated value of φ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

7. Bond strength values shown are for normal-weight concrete having a compressive strength of f^r_c = 2,500 psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of $(f'_c/2,500)^{0.10}$.

8. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable,

9. Characteristic bond strength values are for sustained loads, including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond strengths may be increased by 23% for Temperature Range C.

10. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by a_{N,seis}.

Strong-Tie **Adhesive** Anchors

AT-3G[™] Design Information — Concrete

AT-3G Shear Strength Design Data for Threaded Rod¹

46

()	
62	
\geq	
\mathbf{O}	
<u></u>	
\mathbf{O}	
\triangleleft	
(1)	
1.	
S	
a)	
Y	
O	

Charactariatia	Symbol	Unite	Nominal Rod Diameter (in.)							
Gharacteristic	Symbol	Units	3⁄8	1⁄2	5⁄8	3⁄4	7⁄8	1	1¼	
	Strength in S	hear	•							
Minimum Shear Stress Area	A _{se}	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
Shear Resistance of Steel — ASTM F1554, Grade 36			2,695	4,940	7,860	11,640	16,070	21,080	33,725	
Shear Resistance of Steel — ASTM F1554, Grade 55			3,490	6,385	10,170	15,055	20,780	27,260	43,610	
Shear Resistance of Steel — ASTM A193, Grade B7 and ASTM F1554, Grade 105			5,810	10,640	16,950	25,085	34,625	45,425	72,680	
Shear Resistance of Steel — ASTM A449	V _{sa}	lb.	5,580	10,220	16,270	24,085	33,240	43,610	61,055	
Shear Resistance of Steel — ASTM F593 CW (Types 304 and 316 Stainless Steel)			4,650	8,515	13,560	17,060	23,545	30,890	49,425	
Shear Resistance of Steel — ASTM A193, Grade B8/B8M, Class 2B (Types 304 and 316 Stainless Steel)			4,420	8,090	12,880	19,070	26,320	34,525	55,240	
Reduction Factor for Seismic Shear	$lpha_{V,seis}{}^3$	—				0.65				
Strength Reduction Factor for Shear — Steel Failure	φ	_				0.65 ²				
C	oncrete Brea	akout Strenç	gth in Shea	r						
Outside Diameter of Anchor	d _a	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-Bearing Length of Anchor in Shear	le	in.	Minimum of <i>h_{ef}</i> and 8x anchor diameter							
Strength Reduction Factor for Shear — Breakout Failure	φ	—	0.702							
Concrete Pryout Strength in Shear										
Load-Bearing Length of Anchor in Shear	k _{cp}	in.		1.	0 for $h_{ef} < 2$	2.50"; 2.0 f	or $h_{ef} \ge 2.5$	0"		
Strength Reduction Factor for Shear — Breakout Failure	φ	_				0.70 ²				

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to

ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by a_{V,seis} for the corresponding anchor steel type.

For additional load tables, visit strongtie.com/at3g.

Anchor Designer[™] Software for ACI 318, ETAG and CSA

Simpson Strong-Tie[®] Anchor Designer software accurately analyzes existing design or suggests anchor solutions based on user-defined design elements in cracked and uncracked concrete conditions.

SIMPSON

Strong-I

IBC

SIMPSO Strong-Tie

AT-3G Shear Strength Design Data for Rebar¹

AT-3G[™] Design Information — Concrete

AT-3G Shear Strength Design Data for Rebar ¹							BC			
Characteristic		11	Nominal Rod Diameter (in.)							
Characteristic	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	
Steel Strength in Shear										
Minimum Shear Stress Area	Ase	in. ²	0.11	0.20	0.31	0.44	0.60	0.79	1.00	
Shear Resistance of Steel — ASTM A615 Grade 60			5,940	10,800	16,740	23,760	32,400	42,660	54,000	
Shear Resistance of Steel — ASTM A706 Grade 60	V _{sa}	lb.	5,280	9,600	14,880	21,120	28,800	37,920	48,000	
Shear Resistance of Steel — ASTM A615 Grade 40		3,960 7,200 11,160 15,840 5					Siz	Sizes not available		
Reduction Factor for Seismic Shear	$\alpha_{V,seis}{}^{3}$	—				0.65				
Strength Reduction Factor for Shear — Steel Failure — ASTM A615 Grades 40 and 60	φ	_	0.60 ²							
Strength Reduction Factor for Shear — Steel Failure — ASTM A706	φ	—				0.65 ²				
Concr	ete Breako	ut Strenç	gth in Shea	ır						
Outside Diameter of Anchor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-Bearing Length of Anchor in Shear	le	in.	Minimum of <i>h_{ef}</i> and 8x anchor diameter							
Strength Reduction Factor for Shear — Breakout Failure	φ	—	0.70 ²							
Concrete Pryout Strength in Shear										
Load-Bearing Length of Anchor in Shear	k _{cp}	in.		1.	0 for $h_{ef} < 2$	2.50"; 2.0 f	for $h_{ef} \ge 2.5$	0"		
Strength Reduction Factor for Shear — Breakout Failure	φ	_				0.70 ²				

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by $\alpha_{V,seis}$ for the corresponding anchor steel type.

-3G Development Length for Rebar Dowes									
Drill Bit	Cloar Covor		De	velopment Length (i	n.)				
Diameter (in.)	(in.)	f' _c = 2,500 psi Concrete	f' _c = 3,000 psi Concrete	f' _c = 4,000 psi Concrete	f' _c = 6,000 psi Concrete	f' _c = 8,000 psi Concrete			
1⁄2	1 3⁄16	12	12	12	12	12			
5⁄8	13⁄16	14.4	14	12	12	12			
3⁄4	13⁄16	18	17	14.2	12	12			
7⁄8	13⁄16	21.6	20	17.1	14	13			
1	1%16	31.5	29	25	21	18			
11/8	1%16	36	33	28.5	24	21			
13⁄8	1%16	40.5	38	32	27	23			
	Drill Bit Diameter (in.) 1/2 5% 3/4 7% 1 1 11% 11%	Drill Bit Diameter (in.) Clear Cover (in.) ½ 1¾6 5% 1¾6 ¾ 1¾6 ¾ 1¾6 1% 1¾6 1 1¾6 1% 1¾6 1% 1¾6 1% 1¾16 1% 1¾16	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Development Length for Rebar DowelsDrill Bit Diameter (in.) $Clear Cover(in.)f_c = 2,500 \text{ psi}Concretef_c = 3,000 \text{ psi}Concretef_c = 4,000 \text{ psi}Concrete1/213/161212121/213/1614.414125/813/16181714.23/413/1621.62017.1119/1631.5292511/619/16363328.513/819/1640.53832$	Description Rebar Dowels Drill Bit Diameter (in.) Clear Cover (in.) If c = 2,500 psi Concrete If c = 3,000 psi Concrete If c = 4,000 psi Concrete If c = 6,000 psi Concrete ½ 1¾6 12 12 12 12 ½ 1¾6 14.4 14 12 12 ¾ 1¾6 18 17 14.2 12 ¾ 1¾16 21.6 20 17.1 14 1 1¾16 31.5 29 25 21 1‰ 1¾1%6 36 33 28.5 24 1‰ 1¾1%6 40.5 38 32 27			

-----. . . oth fay Dala

1. Tabulated development lengths are for static, wind and seismic load cases in Seismic Design Category A and B. Development lengths in

Seismic Design Category C through F must comply with ACI 318-19 and ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable.

2. Rebar is assumed to be ASTM A615 Grade 60 or A706 (fv = 60,000 psi). For rebar with a higher yield strength, multiply tabulated values by fv/60,000 psi. 3. Concrete is assumed to be normal-weight concrete. For lightweight concrete, multiply tabulated values by 1.33. Tabulated values assume bottom cover less that 12" cast below rebars ($\Psi_1 = 1.0$).

Uncoated rebar must be used.

5. The value of K_{tr} is assumed to be 0. Refer to ACI 318-19 Section 25.4.2.4, ACI 318-14 Section 25.4.2.3 or ACI 318-11 Section 12.2.3.

Rebar Development Length Calculator

Rebar Development Length Calculator is a web application that supports the design of post-installed rebar in concrete applications by calculating the necessary tension and compression development lengths required in accordance with ACI 318-19 / ACI 318-14.