SET-XP® High-Strength Epoxy Adhesive

SET-XP is an epoxy-based high-strength anchoring adhesive. SET-XP is a 1:1 ratio, two-component anchoring adhesive for anchoring and doweling into concrete (cracked and uncracked) and masonry (uncracked) applications.

Features

- Design flexibility permitted for sustained load performance at elevated temperature
- Jobsite versatility can be specified for dry and damp conditions when in-service temperatures range from -40°F (-40°C) to 150°F (65°C)
- Recognized per AC308 to be used for rebar development and splice length design provisions of ACI 318
- Code listed for installation with the Speed Clean™ DXS system without any further cleaning

Product Information

1:1 epoxy
Teal
Concrete — Cracked and uncracked Masonry — Uncracked
Dry, water-saturated
Threaded rod or rebar
50°F (4°C) to 110°F (38°C)
-40°F (-40°C) to 150°F (65°C)
45°F (7°C) and 90°F (32°C)
24 months
3 g/L
See pp. 268–269
materials

Test Criteria

SET-XP has been tested in accordance with ICC-ES AC308, AC58, ACI 355.4 and applicable ASTM test methods.

Code Reports, Standards and Compliance

Concrete — ICC-ES ESR-2508 (including post-installed rebar and City of LA Report); FL15730.

Masonry — IAPMO UES ER-265 (including City of LA Report); FL16230. ASTM C881 and AASHTO M235 — Types I/IV and II/V, Grade 3, Class C. UL Certification — CDPH Standard Method v1.2. NSF/ANSI/CAN 61 (216 in.² / 1,000 gal.)

Installation Instructions

Installation instructions are located at the following locations: pp. 64–67; product packaging; or **strongtie.com/setxp**.

• Hole cleaning brushes are located on p. 68.

SET-XP Cartridge System

Model No.	Capacity (ounces)	Cartridge Type	Carton Quantity	Dispensing Tool(s)	Mixing Nozzle ³
SET-XP10⁴	8.5	Single	12	CDT10S	
SET-XP22-N ⁴	22	Side-by-Side	10	EDT22S, EDTA22P, EDTA22CKT	EMN22I
SET-XP56	56	Side-by-Side	6	EDTA56P	

- 1. Cartridge estimation guidelines are available at **strongtie.com/softwareandwebapplications/category**.
- 2. Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available at **strongtie.com**.
- Use only Simpson Strong-Tie mixing nozzles in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair SET-XP adhesive performance.
- 4. One EMN22I mixing nozzle and one nozzle extension are supplied with each cartridge.
- 5. Use of rodless pneumatic tools to dispense single-tube, coaxial adhesive cartridges is prohibited.

SET-XP Adhesive

SET-XP® High-Strength Epoxy Adhesive

SIMPSON Strong-Tie

SET-XP Cure Schedule

Base Materia	l Temperature	Gel Time	Cure Time
°F	°C	(minutes)	(hrs.)
50	10	75	72
60	16	60	48
70	21	45	24
90	32	35	24
110	43	20	24

For water-saturated concrete, the cure times must be doubled.

SET-XP Typical Properties

	Promoute	Class C	Test
	Property	(>60°F)	Method
Consistency		non-sag	ASTM C881
	Hardened to Hardened Concrete, 2-Day Cure ¹	2,900 psi	
Bond Strength, Slant Shear	Hardened to Hardened Concrete, 14-Day Cure ¹	3,200 psi	ASTM C882
	Fresh to Hardened Concrete, 14-Day Cure ²	2,000 psi	
Compressive Yield Strength, 7-D	ay Cure ²	14,100 psi	ASTM D695
Compressive Modulus, 7-Day Cu	ıre ²	612,000 psi	ASTM D695
Heat Deflection Temperature, 7-	Day Cure ²	136°F (58°C)	ASTM D648
Glass Transition Temperature, 7-	Day Cure ²	126°F (52°C)	ASTM E1356
Decomposition Temperature, 24	osition Temperature, 24-Hour Cure ²		ASTM E2550
Water Absorption, 24-Hours, 7-D	Day Cure ²	0.10%	ASTM D570
Shore D Hardness, 24-Hour Cure	9 ²	84	ASTM D2240
Linear Coefficient of Shrinkage,	7-Day Cure ²	0.002 in./in.	ASTM D2566
Coefficient of Thermal Expansion	n ²	2.4 x 10 ⁻⁵ in./in.°F	ASTM C531

- 1. Material and curing conditions: 60° ± 2°F.
- 2. Material and curing conditions: 73° \pm 2°F.

SET-XP Installation Information and Additional Data for Threaded Rod and Rebar¹

Charactaristic	Characteristic		Units	Nominal Anchor Diameter (in.) / Rebar Size								
Gliaracteristic		Symbol	Units	% / #3	1/2 / #4	5% / #5	3/4 / #6	7⁄8 / # 7	1 / #8	1¼/#10		
			Instal	lation Inform	ation							
Drill Bit Diameter		d _{hole}	in.	1/2	5/8	3/4	7/8	1	11/8	1%		
Maximum Tightening Torque		T _{inst}	ftlb.	10	20	30	45	60	80	125		
Darmittad Embadment Denth Denge	Minimum	h _{ef}	in.	23/8	23/4	31/8	3½	3¾	4	5		
Permitted Embedment Depth Range	Maximum	h _{ef}	in.	7½	10	121/2	15	17½	20	25		
Minimum Concrete Thickness		h _{min}	in.				h _{ef} + 5d _{hole}					
Critical Edge Distance ²		C _{ac}	in.				See footnote 2	2				
Minimum Edge Distance	C _{min}	in.		1%								
Minimum Anchor Spacing		S _{min}	in.			;	3			6		

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. $c_{ac} = h_{ef} (\tau_{k,uncr}/1,160)^{0.4} \times [3.1 0.7(h/h_{ef})]$, where:

 $[h/h_{ef}] \leq 2.4$

 $\tau_{\textit{k,uncr}} = \text{the characteristic bond strength in uncracked concrete, given in the tables that follow} \leq k_{\textit{uncr}} (\textit{(h}_{\textit{ef}} \times \textit{f'}_{\textit{c}})^{0.5} / (\pi \times \textit{d}_{\textit{hole}}))$

h =the member thickness (inches)

 h_{ef} = the embedment depth (inches)

^{*} See p. 12 for an explanation of the load table icons.

SET-XP Tension Strength Design Data for Threaded Rod¹

	OL 1 1 1						Nominal A	nchor Dia	meter (in.)	
	Characteristic		Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	11/4
		Steel Str	ength in To	ension	•	•		•			<u>'</u>
	Minimum Tensile Stress Area		A _{se}	in ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969
	Tension Resistance of Steel — ASTM F1554,	Grade 36			4,525	8,235	13,110	19,370	26,795	35,150	56,200
	Tension Resistance of Steel — ASTM A193, G	irade B7			9,750	17,750	28,250	41,750	57,750	75,750	121,125
Threaded Rod	Tension Resistance of Steel — Type 410 Stair (ASTM A193, Grade B6)	nless	N _{sa}	lb.	8,580	15,620	24,860	36,740	50,820	66,660	106,590
	Tension Resistance of Steel — Type 304 and (ASTM A193, Grade B8 and B8M)			4,445	8,095	12,880	19,040	26,335	34,540	55,235	
	Strength Reduction Factor — Steel Failure			_			•	0.757			
	Concrete Brea	akout Strength ir	Tension (2,500 p	si ≤ f' _C ≤ 8	8,000 psi)	12				
Effectiveness Fa	actor — Uncracked Concrete		k _{uncr}	_				24			
Effectiveness Fa	actor — Cracked Concrete		k _{cr}	_				17			
Strength Reduc	tion Factor — Breakout Failure		φ	_				0.65 ⁹			
	Bond S	Strength in Tensio	on (2,500 p	osi ≤ f'c	$c \le 8,000 \text{ psi})^{12}$						
	Characteristic Bond Strength ^{5,13}			psi	770	1,150	1,060	970	885	790	620
Uncracked Concrete ^{2,3,4}	Permitted Embedment Depth Range	Minimum	h _{ef} in.	2%	2¾	31/8	3½	3¾	4	5	
	r ennitted Embedment Deptir hange	Maximum	l let		7½	10	12½	15	171⁄2	20	25
	Characteristic Bond Strength ^{5,10,11,13}		$ au_{k,cr}$	psi	595	510	435	385	355	345	345
Cracked Concrete ^{2,3,4}	Permitted Embedment Depth Range	Minimum	h _{ef}	in.	3	4	5	6	7	8	10
	Territica Embedment Departiange	Maximum	l let	111.	7½	10	12½	15	17½	20	25
	Bond Strength in Tension —	- Bond Strength	Reduction	Factors	s for Cont	inuous Sp	ecial Inspe	ection			
Strength Reduc	tion Factor — Dry Concrete		Ф _{dry, ci}	_				0.658			
Strength Reduc	tion Factor — Water-Saturated Concrete — h _{ef}	≤ 12d _a	Фsat,ci	_	0.9	55 ⁸			0.458		
Additional Facto	or for Water-Saturated Concrete — $h_{ef} \le 12d_a$		K _{sat,ci} 6	_			1			0.	84
Strength Reduc	tion Factor — Water-Saturated Concrete — h _{ef}	> 12d _a	Фsat,ci	_				0.458			
Additional Facto	or for Water-Saturated Concrete — $h_{\text{ef}} > 12d_{\text{a}}$		K _{sat,ci} 6	_				0.57			
	Bond Strength in Tension -	— Bond Strength	n Reductio	n Facto	rs for Per	iodic Spec	cial Inspec	tion			
Strength Reduction Factor — Dry Concrete			$\phi_{dry,pi}$	_				0.558			
Strength Reduc	Strength Reduction Factor — Water-Saturated Concrete — $h_{ef} \le 12d_a$			_				0.458			
Additional Facto	or for Water-Saturated Concrete — $h_{ef} \le 12d_a$		K _{sat,pi} 6	_		1		0.93		0.	71
Strength Reduc	tion Factor — Water-Saturated Concrete — h _{ef}	> 12d _a	φ _{sat,pi}					0.458			
Additional Factor	or for Water-Saturated Concrete — $h_{ef} > 12d_a$		K _{sat,pi} 6	_				0.48			

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 or ACI 318-11.
- 2. Temperature Range: Maximum short-term temperature of 150°F. Maximum long-term temperature of 110°F.
- 3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- 4. Long-term concrete temperatures are constant temperatures over a significant time period.
- 5. For anchors that only resist wind or seismic loads, bond strengths may be increased by 72%.
- 6. In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by K_{sat} .
- 7. The value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 8. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.4 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 9. The value of φ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.4 (c) for Condition B are met. If the load combinations of ACI 318-11 Section 9.2 are used and the requirements of ACI 318-11 D.4.4 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.5 to determine the appropriate value of φ.
- 10. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for %" anchors must be multiplied by $\alpha_{N.Seis} = 0.80$.
- 11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1" anchors must be multiplied by $\alpha_{N,seis} = 0.92$.
- 12. The values of f'_c used for calculation purposes must not exceed 8,000 psi (55.1 MPa) for uncracked concrete. The value of f'_c used for calculation purposes must not exceed 2,500 psi (17.2 MPa) for tension resistance in cracked concrete.

SIMPSON
Strong-Tie

SET-XP Tension Strength Design Data for Rebar¹

	01 1 1 1		Oh.al		Rebar Size						
	Characteristic		Symbol	Units	#3	#4	#5	#6	#7	#8	#10
		Stee	el Strength in	Tension							
	Minimum Tensile Stress Area		A _{se}	in ²	0.11	0.2	0.31	0.44	0.6	0.79	1.23
Rebar	Tension Resistance of Steel — Rebar (ASTM A615 Grade 60)		N _{sa}	lb.	9,900	18,000	27,900	39,600	54,000	71,100	110,700
	Strength Reduction Factor — Steel Failure		ϕ	_				0.657			
	Concrete Br	eakout Streng	gth in Tension	(2,500 psi	$\leq f_C^1 \leq 8,0$	000 psi) ¹⁰					
Effectiveness Factor — Uno	cracked Concrete		<i>k</i> _{uncr}	_				24			
Effectiveness Factor — Cra	cked Concrete		k _{cr}	_				17			
Strength Reduction Factor -	— Breakout Failure		φ	_				0.659			
	Bond	Strength in T	ension (2,500	$psi \leq f'_C \leq$	8,000 psi)10					
	Characteristic Bond Strength ^{5,11}		$ au_{k,uncr}$	psi	895	870	845	820	795	770	720
Uncracked Concrete ^{2,3,4}	Permitted Embedment Depth Range	Minimum	h _{ef}	in.	2%	23/4	31/8	3½	3¾	4	5
		Maximum	ei		7½	10	12½	15	17½	20	25
	Characteristic Bond Strength ^{5,1}	1	$ au_{k,cr}$	psi	365	735	660	590	515	440	275
Cracked Concrete ^{2,3,4}	Permitted Embedment Depth Range	Minimum	- h _{ef}	in.	3	4	5	6	7	8	10
		Maximum			7½	10	12½	15	17½	20	25
	Bond Strength in Tension -	— Bond Stren	ngth Reduction	n Factors f	or Continu	ous Spec	ial Inspec	ction			
Strength Reduction Factor -	— Dry Concrete		φ _{dry,ci}	_				0.658			
Strength Reduction Factor -	— Water-Saturated Concrete – h _{ef}	≤ 12d _a	φ _{sat,ci}	_	0.	55 ⁸			0.458		
Additional Factor for Water-	Saturated Concrete – h _{ef} ≤ 12d _a		K _{sat,ci} 6	_			1			0.	84
Strength Reduction Factor -	— Water-Saturated Concrete – h _{ef}	> 12d _a	φsat,ci	_				0.458			
Additional Factor for Water-	Saturated Concrete $-h_{ef} > 12d_a$		K _{sat,ci} 6	_				0.57			
	Bond Strength in Tension	n — Bond Stre	ength Reducti	on Factors	for Perio	dic Specia	al Inspecti	ion			
Strength Reduction Factor -	— Dry Concrete		φ _{dry,pi}	_				0.558			
Strength Reduction Factor -	— Water-Saturated Concrete – h _{ef}	≤ 12d _a	φ _{sat,pi}	_				0.458			
Additional Factor for Water-	Saturated Concrete — h _{ef} ≤ 12d _a		K _{sat,pl} s	_		1		0.93		0.	71
Strength Reduction Factor -	— Water-Saturated Concrete – h _{ef}	> 12d _a	φ _{sat,pi}	_				0.458			
Additional Factor for Water-	Saturated Concrete – h _{ef} > 12d _a		K _{sat,pl} 6	_				0.48			_

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 or ACI 318-11.
- 2. Temperature Range: Maximum short-term temperature of 150°F. Maximum long-term temperature of 110°F.
- 3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- 4. Long-term concrete temperatures are constant temperatures over a significant time period.
- 5. For anchors that only resist wind or seismic loads, bond strengths may be increased by 72%.
- 6. In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by K_{sat} .

C-A-2021 @2021 SIMPSON STRONG-TIE COMPANY INC.

- 7. The value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 8. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.4 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 9. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.4 (c) for Condition B are met. If the load combinations of ACI 318-11 Section 9.2 are used and the requirements of ACI 318-11 D.4.4 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.5 to determine the appropriate value of ϕ .
- 10. The values of f'_c used for calculation purposes must not exceed 8,000 psi (55.1 MPa) for uncracked concrete. The value of f'_c used for calculation purposes must not exceed 2,500 psi (17.2 MPa) for tension resistance in cracked concrete.

SET-XP Shear Strength Design Data for Threaded Rod¹

Characteristic		Cumbal	Units -	Nominal Anchor Diameter (in.)						
	GHALACTELISTIC	Symbol	UIIILS	3/8	1/2	5/8	3/4	7/8	1	1¼
	Steel	Strength	ngth in Shear							
	Minimum Shear Stress Area	A _{se}	in.²	0.078	0.142	0.226	0.334	0.462	0.606	0.969
	Shear Resistance of Steel — ASTM F1554, Grade 36			2,260	4,940	7,865	11,625	16,080	21,090	33,720
	Shear Resistance of Steel — ASTM A193, Grade B7			4,875	10,650	16,950	25,050	34,650	45,450	72,675
	Shear Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)	V _{sa}	lb.	4,290	9,370	14,910	22,040	30,490	40,000	63,955
Threaded Rod	Shear Resistance of Steel — Type 304 and 316 Stainless (ASTM A193, Grade B8 & B8M)			2,225	4,855	7,730	11,420	15,800	20,725	33,140
KOU	Reduction for Seismic Shear — ASTM F1554, Grade 36			0.87	0.78		0.	68		0.65
	Reduction for Seismic Shear — ASTM A193, Grade B7			0.87	0.78		0.	68		0.65
	Reduction for Seismic Shear — Stainless (ASTM A193, Grade B6)	$\alpha_{V\!,seis}^{5}$	—	0.69	0.82		0.75		0.83	0.72
	Reduction for Seismic Shear — Stainless (ASTM A193, Grade B8 & B8M)			0.69	0.82		0.75		0.83	0.72
	Strength Reduction Factor — Steel Failure	φ	_		0.65 ²					
	Concrete Br	eakout S	trength i	n Shear						
Outside D	iameter of Anchor	do	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
Load Bear	ing Length of Anchor in Shear	ℓ_e	in.		Mir	n. of <i>h_{ef}</i> and	d 8 times a	nchor diam	eter	
Strength F	Reduction Factor — Breakout Failure	φ	_	0.70 ³						
	Concrete Pryout Strength in Shear									
Coefficien	t for Pryout Strength	k _{cp}	_	1.0 for h_{ef} < 2.50"; 2.0 for $h_{ef} \ge 2.50$ "						
Strength F	Reduction Factor — Pryout Failure	φ	_				0.704			

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. The value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 3. The value of φ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.3 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ.
- 4. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 5.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 5. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by a_{V,Sels} for the corresponding anchor steel type.

SET-XP Shear Strength Design Data for Rebar¹

Characteristic		Symbol	Units	Rebar Size						
	บแลเ สบเฮเ เชนบ		UIIILS	#3	#4	#5	#6	#7	#8	#10
		Steel Streng	jth in Sheai	•						
	Minimum Shear Stress Area	A _{se}	in²	0.11	0.2	0.31	0.44	0.6	0.79	1.23
Rebar	Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)	V _{sa}	lb.	4,950	10,800	16,740	23,760	32,400	42,660	66,420
nebai	Reduction for Seismic Shear — Rebar (ASTM A615 Grade 60)	$lpha_{V\!,{\it Seis}^5}$	_	0.85 0.88 0.84		84	0.77		0.59	
	Strength Reduction Factor — Steel Failure	φ	_	0.60 ²						
	Concre	te Breakout	Strength in	n Shear						
Outsid	e Diameter of Anchor	d_0	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
Load-l	Bearing Length of Anchor in Shear	ℓ_e	in.		Min	. of <i>h_{ef}</i> and	d 8 times a	nchor diam	eter	
Streng	th Reduction Factor — Breakout Failure	φ	_				0.70^{3}			
	Concrete Pryout Strength in Shear									
Coefficient for Pryout Strength k_{cp} — 1.0 for $h_{ef} < 2.50$ "; 2.0 for $h_{ef} \ge 2.50$ "					50"					
Streng	th Reduction Factor — Pryout Failure	φ	_				0.704			

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 or ACI 318-11.
- 2. The value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 3. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.3 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 4. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 5.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 5. The values of V_{Sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{Sa} must be multiplied by $\alpha_{V_{Sels}}$.

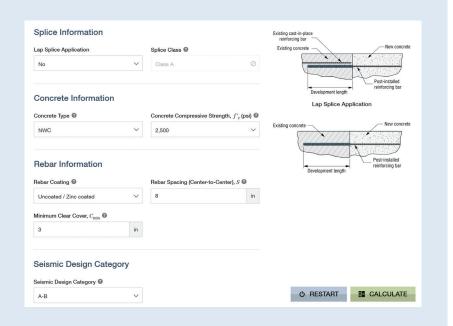
For additional load tables, visit strongtie.com/setxp.

C-A-2021 @ 2021 SIMPSON STRONG-TIE COMPANY INC.

Anchor Designer[™] Software for ACI 318, ETAG and CSA

Simpson Strong-Tie® Anchor Designer software accurately analyzes existing design or suggests anchor solutions based on user-defined design elements in cracked and uncracked concrete conditions.

SET-XP Development Length for Rebar Dowels



				Dev	elopment Length, in. (mm)	
Rebar Size	Drill Bit Diameter (in.)	Clear Cover in. (mm)	f' _c = 2,500 psi (17.2 MPa) Concrete	f' _c = 3,000 psi (20.7 MPa) Concrete	f' _c = 4,000 psi (27.6 MPa) Concrete	f' _c = 6,000 psi (41.4 MPa) Concrete	f' _c = 8,000 psi (55.2 MPa) Concrete
#3 (9.5)	1/2	1½ (38)	12 (305)				
#4 (12.7)	5/8	1½ (38)	14.4 (366)	14 (356)	12 (305)	12 (305)	12 (305)
#5 (15.9)	3/4	1½ (38)	18 (457)	17 (432)	14.2 (361)	12 (305)	12 (305)
#6 (19.1)	7/8	1½ (38)	21.6 (549)	20 (508)	17.1 (434)	14 (356)	13 (330)
#7 (22.2)	1	3 (76)	31.5 (800)	29 (737)	25 (635)	21 (533)	18 (457)
#8 (25.4)	11/8	3 (76)	36 (914)	33 (838)	28.5 (724)	24 (610)	21 (533)
#9 (28.7)	13/8	3 (76)	40.5 (1,029)	38 (965)	32 (813)	27 (686)	23 (584)
#10 (32.3)	13/8	3 (76)	45 (1,143)	42 (1,067)	35.6 (904)	30 (762)	26 (660)
#11 (35.8)	13/4	3 (76)	51 (1,295)	47 (1,194)	41 (1,041)	33 (838)	29 (737)

- 1. Tabulated development lengths are for static, wind and seismic load cases in Seismic Design Category A and B. Development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 12, as applicable. The value of f'_C used to calculate development lengths shall not exceed 2,500 psi in SDC C through F.
- 2. Rebar is assumed to be ASTM A615 Grade 60 or A706 ($f_y = 60,000$ psi). For rebar with a higher yield strength, multiply tabulated values by $f_y / 60,000$ psi.
- 3. Concrete is assumed to be normal-weight concrete. For lightweight concrete, multiply tabulated values by 1.33.
- 4. Tabulated values assume bottom cover of less than 12" cast below rebars (Ψ_t = 1.0).
- 5. Uncoated rebar must be used.
- 6. The value of K_{tr} is assumed to be 0. Refer to ACI 318-14 Section 25.4.2.3 or ACI 318 Section 12.2.3.

Rebar Development Length Calculator

Rebar Development Length Calculator is a web application that supports the design of post-installed rebar in concrete applications by calculating the necessary tension and compression development lengths required in accordance with ACI 318-18 / ACI 318-14.

SET-XP Allowable Tension and Shear Loads for Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction 1, 3, 4, 5, 6, 8, 9, 10, 11

IBC		→		*
$\overline{}$	2007 12:03	2007 1000	STILL O	

Diameter (in.) or	Drill Bit Diameter	Minimum Embedment ²	Allowable Load Based	on Bond Strength ⁷ (lb.)
Rebar Size Ńo.	(in.)	(in.)	Tension Load	Shear Load
	Threade	d Rod Installed in the Face of C	MU Wall	
3/8	1/2	3%	1,490	1,145
1/2	5/8	4½	1,825	1,350
5/8	3/4	5%	1,895	1,350
3/4	7/8	6½	1,895	1,350
	Reb	ar Installed in the Face of CMU	Wall	
#3	1/2	3%	1,395	1,460
#4	5/8	41/2	1,835	1,505
#5	3/4	5%	2,185	1,505

- 1. Allowable load shall be the lesser of the bond values shown in this table and steel values, shown on p. 43.
- 2. Embedment depth shall be measured from the outside face of masonry wall.
- 3. Critical and minimum edge distance and spacing shall comply with the information on p. 38. Figure 2 on p. 38 illustrates critical and minimum edge and end distances.
- 4. Minimum allowable nominal width of CMU wall shall be 8". No more than one anchor shall be permitted per masonry cell.
- 5. Anchors shall be permitted to be installed at any location in the face of the fully grouted masonry wall construction (cell, web, bed joint), except anchors shall not be installed within 11/2" of the head joint, as show in Figure 2 on p. 38.
- 6. Tabulated allowable load values are for anchors installed in fully grouted masonry walls.
- 7. Tabulated allowable loads are based on a safety factor of 5.0.
- 8. Tabulated allowable load values shall be adjusted for increased base material temperatures in accordance with Figure 1 below, as applicable.
- 9. Threaded rod and rebar installed in fully grouted masonry walls are permitted to resist dead, live, seismic and wind loads.
- 10. Threaded rod shall meet or exceed the tensile strength of ASTM F1554, Grade 36 steel, which is 58,000 psi.
- 11. For installations exposed to severe, moderate or negligible exterior weathering conditions, as defined in Figure 1 of ASTM C62, allowable tension loads shall be multiplied by 0.80.

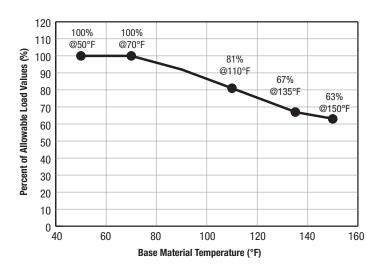
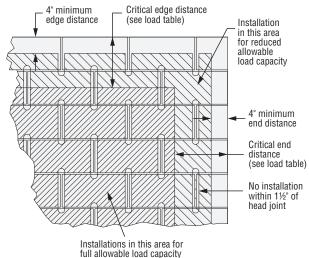


Figure 1. Load Capacity Based on In-Service Temperature for SET-XP® Epoxy Adhesive in the Face of Fully Grouted CMU Wall Construction



SET-XP Edge Distance and Spacing Requirements and Allowable Load Reduction Factors — Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction⁷

IRC		0 0	THE	0	*
IDU	/ → ĭ	<i>1</i> 4 → N			

			Ed	ge or End Dista	or End Distance ^{1,8}					Spacing ^{2,9}			
		Crit (Full Ancho	ical r Capacity)³	(Reduc			Minimum ed Anchor Capacity) ⁴		ical r Capacity)⁵	Minimum (Reduced Anchor Capacity) ⁶			
Rod Dia. (in.) or Rebar Size	Minimum Embed. Depth (in.)	Critical Edge or End Distance, \mathcal{C}_{cr} (in.)	Allowable Load Reduction Factor	Minimum Edge or End Distance, <i>C_{min}</i> (in.)		Reduction Factor		Critical Spacing, <i>S_{cr}</i> (in.)	Allowable Load Reduction Factor	Minimum Spacing, S _{min} (in.)	Allowab Reductio		
No.		Load D	irection		Load Direc	tion		Load Di	rection		Load Direction		
		Tension or	Tension or	Tension or	Tension	Shea	ar ¹⁰	Tension or	Tension or	Tension or	Tension	Shear	
		Shear	Shear	Shear	101131011	Perp.	Para.	Shear	Shear	Shear	TOTISION	Oncai	
3/8	3%	12	1.00	4	0.91	0.72	0.94	8	1.00	4	1.00	1.00	
1/2	41/2	12	1.00	4	1.00	0.58	0.87	8	1.00	4	0.82	1.00	
5/8	5%	12	1.00	4	1.00	0.48	0.87	8	1.00	4	0.82	1.00	
3/4	6½	12	1.00	4	1.00	0.44	0.85	8	1.00	4	0.82	1.00	
#3	3%	12	1.00	4	0.96	0.62	0.84	8	1.00	4	0.87	0.91	
#4	41/2	12	1.00	4	0.88	0.54	0.82	8	1.00	4	0.87	0.91	
#5	5%	12	1.00	4	0.88	0.43	0.82	8	1.00	4	0.87	1.00	

- Edge distance (C_{cr} or C_{min}) is the distance measured from anchor centerline to edge or end of CMU masonry wall. Refer to Figure 2 below for an illustration showing critical and minimum edge and end distances.
- 2. Anchor spacing (S_{cr} or S_{min}) is the distance measured from centerline to centerline of two anchors.
- Critical edge distance, C_{cr}, is the least edge distance at which tabulated allowable load of an anchor is achieved where a load reduction factor equals 1.0 (no load reduction).
- Minimum edge distance, C_{min}, is the least edge distance where an anchor has an allowable load capacity which shall be determined by multiplying the allowable loads assigned to anchors installed at critical edge distance, C_{Cr}, by the load reduction factors shown above.
- Critical spacing, S_{Cr} is the least anchor spacing at which tabulated allowable load of an anchor is achieved such that anchor performance is not influenced by adjacent anchors.
- 6. Minimum spacing, S_{min} , is the least spacing where an anchors has an allowable load capacity, which shall be determined by multiplying the allowable loads assigned to anchors installed at critical spacing distance, S_{cr} , by the load reduction factors shown above.
- 7. Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.
- 8. Load reduction factor for anchors loaded in tension or shear with edge distances between critical and minimum shall be obtained by linear interpolation.
- 9. Load reduction factor for anchors loaded in tension with spacing between critical and minimum shall be obtained by linear interpolation.
- 10. Perpendicular shear loads act towards the edge or end. Parallel shear loads act parallel to the edge or end (see Figure 5 on p. 40). Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical minimum edge and end distance.

Shaded area = Placement for full and reduced allowable load capacity in grout-filled CMU

Figure 2. Allowable Anchor Locations for Full and Reduced Load Capacity When Installation Is in the Face of Fully Grouted CMU Masonry Wall Construction

SET-XP Allowable Tension and Shear Loads for Threaded Rod and Rebar in the Top of Fully Grouted CMU Wall Construction^{1, 2, 4, 5, 6, 7, 9, 10, 11, 12}

IBC		=		*	
IDU	380 380	387 289			

Diameter (in.) or	Drill Bit Diameter	Minimum Embedment ³	Allowable Load Based on Bond Strength ^{7, 8} (lb.)					
Rebar Size Ńo.	(in.)	(in.)	Tension Load	Shear Perp.	Shear Parallel			
		Threaded Rod In	stalled in the Top of CMU Wa	all				
1/	5/8	41/2	1,485	590	1,050			
1/2	78	12	2,440	665	1,625			
5/	3/	5%	1,700	565	1,435			
5/8	3/4	15	2,960	660	1,785			
7/	1	77/8	1,610	735	1,370			
7/8	I	21	4,760	670	1,375			
Rebar Installed in the Top of CMU Wall								
44	5/	41/2	1,265	550	865			
#4 5%	12	2,715	465	1,280				
ΨΕ	3/	5%	1,345	590	1,140			
#5	3/4	15	3,090	590	1,285			

- 1. Allowable load shall be the lesser of the bond values shown in this table and steel values, shown on p. 43.
- 2. Allowable loads are for installation in the grouted CMU core opening.
- 3. Embedment depth shall be measured from the horizontal surface of the grouted CMU core opening on top of the masonry wall.
- 4. Critical and minimum edge distance, end distance and spacing shall comply with the information on pp. 38 and 40. Figures 3A and 3B on p. 40 illustrate critical and minimum edge and end distances.
- 5. Minimum allowable nominal width of CMU wall shall be 8" (203 mm).
- Anchors are permitted to be installed in the CMU core opening shown in Figures 3A and 3B on p. 40. Anchors are limited to one installation per CMU core opening.
- 7. Tabulated allowable load values are for anchors installed in fully grouted masonry walls.
- 8. Tabulated allowable loads are based on a safety factor of 5.0 .
- 9. Tabulated allowable load values shall be adjusted for increased base material temperatures in accordance with Figure 1 on p. 37, as applicable.
- 10. Threaded rod and rebar installed in fully grouted masonry walls with SET-XP® adhesive are permitted to resist dead, live, seismic and wind loads.
- 11. Threaded rod shall meet or exceed the tensile strength of ASTM F1554, Grade 36 steel, which is 58,000 psi.
- 12. For installations exposed to severe, moderate or negligible exterior weathering conditions, as defined in Figure 1 of ASTM C62, allowable tension loads shall be multiplied by 0.80.

SET-XP Edge and End Distance Requirements and Allowable Load Reduction Factors — Threaded Rod and Rebar in the Top of Fully Grouted CMU Wall Construction^{1,4,5}

BC [

		(Full	Critical (Full Anchor Capacity)²		(1	Minimum End (Reduced Anchor Capacity) ³				Minimum Edge (Reduced Anchor Capacity) ⁶				
Rod Dia. (in.) or Rebar	Minimum Embed. Depth	Critical Edge, <i>C_{cr}</i> (in.)	Critical End Distance, \mathcal{C}_{cr} (in.)	Allowable Load Reduction Factor	Minimum End Distance, <i>C_{min}</i> (in.)	Minimum End Allowable Lead			Minimum Edge, <i>C_{min}</i> (in.)		Allowable Load Reduction Factor			
Size No.	(in.)	ı	Load Direction	n		Load D	irection			Load Direction				
		Tension or	Tension or	Tension or	Tension or	Tension	She	ear ⁶	Tension or	Tension	Sh	ear ⁶		
		Shear	Shear	Shear	Shear	Tension	Perp.	Parallel	Shear	Tension	Perp.	Parallel		
1/2	41/2	2¾	20	1.00	313/16	0.88	0.84	0.66	13⁄4	0.83	0.63	0.77		
/2	12	23/4	20	1.00	313/16	0.64	0.91	0.34	13⁄4	0.95	0.55	0.69		
5/8	5%	2¾	20	1.00	41/4	0.90	1.00	0.50	13⁄4	0.82	0.57	0.71		
78	15	23/4	20	1.00	41/4	0.38	0.85	0.29	13/4	0.91	0.72	0.73		
7/8	77/8	2¾	20	1.00	41/4	0.98	0.72	0.57	_	_	_	_		
1/8	21	2¾	20	1.00	41/4	0.63	0.96	0.64	_	_		_		
#4	41/2	2¾	20	1.00	41/4	0.96	0.90	0.76	_	_	_	_		
#4	12	2¾	20	1.00	41/4	0.58	1.00	0.46	_	_	_	_		
#5	5%	2¾	20	1.00	41/4	1.00	0.86	0.60	_	_	_			
#3	15	2¾	20	1.00	41/4	0.41	0.76	0.49	_	_	_	_		

- 1. Edge and end distances (C_{cr} or C_{min}) are the distances measured from anchor centerline to edge or end of CMU masonry wall. Refer to Figures 3A and 3B below for illustrations showing critical and minimum edge and end distances.
- 2. Critical edge and end distances, C_{cr} , are the least edge distances at which tabulated allowable load of an anchor is achieved where a load reduction factor equals 1.0 (no load reduction).
- 3. Minimum edge and end distances, C_{min} , are the least edge distances where an anchor has an allowable load capacity, which shall be determined by multiplying the allowable loads assigned to anchors installed at critical edge distance, C_{cr} , by the load reduction factors shown above.
- 4. Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.
- 5. Load reduction factor for anchors loaded in tension or shear with edge distances between critical and minimum shall be obtained by linear interpolation.
- 6. Perpendicular shear loads act towards the edge or end. Parallel shear loads act parallel to the edge or end (see Figure 5 below). Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical minimum edge and end distance.

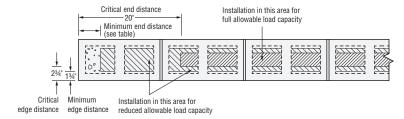


Figure 3A. Allowable Anchor Locations of ½"- and %"-Diameter Threaded Rod for Full and Reduced Load Capacity When Installation Is in the Top of Fully Grouted CMU Masonry Wall Construction

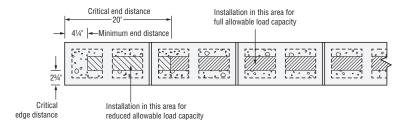
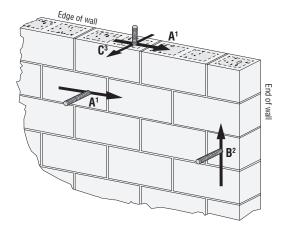



Figure 3B. Allowable Anchor Locations of 1/6"-Diameter Threaded Rod and #4 and #5 Rebar for Full and Reduced Load Capacity When Installation Is in the Top of Fully Grouted CMU Masonry Wall Construction

- Direction of shear load A is parallel to edge of wall and perpendicular to end of wall.
- 2. Direction of shear load B is parallel to end of wall and perpendicular to edge of wall.
- 3. Direction of shear load C is perpendicular to edge of wall.

Figure 5. Direction of Shear Load in Relation to Edge and End of Wall

SET-XP Spacing Distance Requirements and Allowable Load Reduction Factors — Threaded Rod and Rebar in the Top of Fully Grouted CMU Wall Construction^{1,4,5}

		Critical (Full Ancho	Spacing or Capacity) ²	Minimum Spacing (Reduced Anchor Capacity) ³			
Rod Dia. (in.) or Rebar	Minimum Embed. Depth	Critical Spacing, <i>S_{cr}</i> (in.)	Spacing, S_{cr} Load Reduction Spacing, S_{cr}		Allowable Load Reduction Factor		
Size No.	(in.)	Load D	irection		Load Direction		
		Tension or Shear	Tension or Shear	Tension or Shear	Tension	Shear	
1/	41/2	18	1.00	8	0.80	0.92	
1/2	12	48	1.00	8	0.63	0.98	
5/	55%	22.5	1.00	8	0.86	1.00	
5/8	15	60	1.00	8	0.56	1.00	
7/	77/8	31.5	1.00	8	0.84	0.82	
7/8	21	84	1.00	8	0.51	0.98	
#4	41/2	18	1.00	8	0.97	0.93	
#4	12	48	1.00	8	0.75	1.00	
ur.	5%	22.5	1.00	8	1.00	1.00	
#5	15	60	1.00	8	0.82	1.00	

- 1. Anchor spacing (S_{cr} or S_{min}) is the distance measured from centerline to centerline of two anchors.
- 2. Critical spacing, S_{Cr} , is the least anchor spacing at which tabulated allowable load of an anchor is achieved such that anchor perofrmance is not influenced by adjacent anchors.
- 3. Minimum spacing, S_{min} , is the least spacing where an anchor has an allowable load capacity, which shall be determined by multiplying the allowable loads assigned to anchors installed at critical spacing distance, S_{cr} , by the load reduction factors shown above.
- 4. Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.
- 5. Load reduction factor for anchors loaded in tension or shear with spacing critical and minimum shall be obtained by linear interpolation.

SET-XP Allowable Tension and Shear Loads — Threaded Rod in the Face of Hollow CMU Wall Construction^{1,3,4,5,6,8,9,10,11}

Diameter	Drill Bit Diameter	Minimum Embed. ²	Allowab Based on Bond	
(in.)	(in.)	(in.)	Tension	Shear
3/8	9/16	11⁄4	215	385
1/2	3/4	11⁄4	220	410
5/8	7/8	11⁄4	225	435

- 1. Allowable load shall be the lesser of bond values shown in this table and steel values shown on p. 43.
- 2. Embedment depth is considered the minimum wall thickness of 8" x 8" x 16" ASTM C90 concrete masonry blocks, and is measured from the outside to the inside face of the block wall. The minimum length Opti-Mesh plastic screen tube for use in hollow CMU is 31/2".
- 3. Critical and minimum edge distance and spacing shall comply with the information provided on p. 42. Figure 4 on p. 42 illustrates critical and minimum edge and end distances.
- 4. Anchors are permitted to be installed in the face shell of hollow masonry wall construction as shown in Figure 4.
- 5. Anchors are limited to one or two anchors per masonry cell and must comply with the spacing and edge distance requirements provided.
- 6. Tabulated load values are for anchors installed in hollow masonry walls.
- 7. Tabulated allowable loads are based on a safety factor of 5.0.
- Tabulated allowable load values shall be adjusted for increased base material temperatures in accordance with Figure 1 on p. 37, as applicable.
- 9. Threaded rods installed in hollow masonry walls with SET-XP® adhesive are permitted to resist dead, live load and wind load applications.
- 10. Threaded rods must meet or exceed the tensile strength of ASTM F1554, Grade 36, which is 58,000 psi.
- 11. For installations exposed to severe, moderate or negligible exterior weathering conditions, as defined in Figure 1 of ASTM C62, allowable tension loads must be multiplied by 0.80.
- 12. Screen tubes are required and available on p. 71.

C-A-2021 @ 2021 SIMPSON STRONG-TIE COMPANY INC.

SET-XP Edge, End and Spacing Distance Requirements and Allowable Load Reduction Factors — Threaded Rod in the Face of Hollow CMU Wall Construction⁷

	IBC		○		
--	-----	--	----------	--	--

		Edg	e or End Distand	ce ^{1,8}		Spacing ^{2,9}					
	Crit (Full Ancho	ical r Capacity)³	(Reduc	Minimum uced Anchor Capacity)⁴		Crit (Full Ancho	ical r Capacity)⁵	Minimum (Reduced Anchor Capacity) ⁶			
Rod Diameter (in.)	Critical Edge or End Distance, C _{cr} (in.)	Allowable Load Reduction Factor	Minimum Edge or End Distance, <i>C_{min}</i> (in.)	Allowab Reductio		Critical Spacing, <i>S_{cr}</i> (in.)	Allowable Load Reduction Factor	Minimum Spacing, <i>S_{min}</i> (in.)	Allowab Reductio		
	Load Di	irection		Load Direction		Load Di	rection		Load Direction		
	Tension or Shear	Tension or Shear	Tension or Shear	Tension	Shear ¹⁰	Tension or Shear	Tension or Shear	Tension or Shear	Tension	Shear	
3/8	12	1.00	4	1.00	0.74	8	1.00	4	0.82	0.73	
1/2	12	1.00	4	0.96	0.69	8	1.00	4	0.79	0.73	
5/8	12	1.00	4	0.96	0.55	8	1.00	4	0.75	0.73	

- Edge and end distances (C_{cr} or C_{min}) are the distances measured from anchor centerline to edge or end of CMU masonry wall. Refer to Figure 4 below for an illustration showing critical and minimum edge and end distances.
- 2. Anchor spacing (S_{cr} or S_{min}) is the distance measured from centerline to centerline of two anchors.
- 3. Critical edge and end distances, C_{CR} , are the least edge distances at which tabulated allowable load of an anchor is achieved where a load reduction factor equals 1.0 (no load reduction).
- 4. Minimum edge and end distances, C_{min} , are the least edge distances where an anchor has an allowable load capacity which shall be determined by multiplying the allowable loads assigned to anchors installed at critical edge distance, C_{cr} , by the load reduction factors shown above.
- Critical spacing, S_{Cr}, is the least anchor spacing at which tabulated allowable load of an anchor is achieved such that anchor performance is not influenced by adiacent anchors.
- 6. Minimum spacing, S_{min}, is the least spacing where an anchors has an allowable load capacity, which shall be determined by multiplying the allowable loads assigned to anchors installed at critical spacing distance, S_{Cr}, by the load reduction factors shown above.
- 7. Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.
- 8. Load reduction factor for anchors loaded in tension or shear with edge distances between critical and minimum shall be obtained by linear interpolation.
- 9. Load reduction factor for anchors loaded in tension with spacing between critical and minimum shall be obtained by linear interpolation.
- 10. Perpendicular shear loads act toward the edge or end. Parallel shear loads act parallel to the edge or end (see Figure 5 on p. 40). Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical minimum edge and end distance.
- 11. Screen tubes are required and available on p. 71.

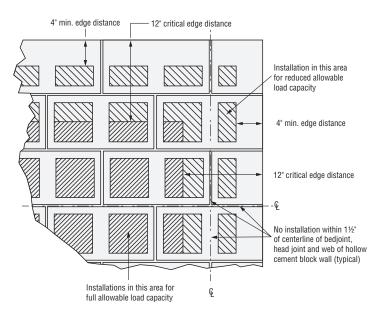


Figure 4. Allowable Anchor Locations for Full and Reduced Load Capacity When Installation Is in the Face of Hollow CMU Masonry Wall Construction

SET-XP® Design Information — Steel

SIMPSON
Strong-Tie

SET-XP Allowable Tension and Shear Loads — Threaded Rod Based on Steel Strength¹

|--|

		Tension	Load Based o	n Steel Streng	jth² (lb.)	Shear Load Based on Steel Strength ³ (lb.)					
Threaded Rod	Tensile Stress			Stainle	Stainless Steel			Stainless Steel			
Diameter (in.)	Area (in.²)	ASTM F1554 Grade 36 ⁴	ASTM A193 Grade B7 ⁶	ASTM A193 Grade B6 ⁵ Gra		ASTM F1554 Grade 36 ⁴	ASTM A193 Grade B7 ⁶	ASTM A193 Grade B6 ⁵	ASTM A193 Grades B8 and B8M ⁷		
3/8	0.078	1,495	3,220	2,830	1,930	770	1,660	1,460	995		
1/2	0.142	2,720	5,860	5,155	3,515	1,400	3,020	2,655	1,810		
5/8	0.226	4,325	9,325	8,205	5,595	2,230	4,805	4,225	2,880		
3/4	0.334	6,395	13,780	12,125	8,265	3,295	7,100	6,245	4,260		
7/8	0.462	8,845	19,055	16,770	11,435	4,555	9,815	8,640	5,890		

- 1. Allowable load shall be the lesser of bond values given on pp. 43, 43 or 43 and steel values in the table above.
- 2. Allowable Tension Steel Strength is based on the following equation: $F_t = 0.33 \times F_u \times Tensile Stress Area$.
- 2. Allowable Tension Steel Strength is based on the following equation: $F_t = 0.33 \times F_u \times \text{Tensile Stress Area.}$ 3. Allowable Shear Steel Strength is based on the following equation: $F_v = 0.17 \times F_u \times \text{Tensile Stress Area.}$
- 4. Minimum specified tensile strength ($F_U = 58,000 \text{ psi}$) of ASTM F1554, Grade 36 used to calculate allowable steel strength.
- 5. Minimum specified tensile strength ($F_U = 110,000 \text{ psi}$) of ASTM A193, Grade B6 used to calculate allowable steel strength.
- 6. Minimum specified tensile strength (F_{u} = 125,000 psi) of ASTM A193, Grade B7 used to calculate allowable steel strength.
- 7. Minimum specified tensile strength ($F_U = 75,000$ psi) of ASTM A193, Grades B8 and B8M used to calculate allowable steel strength.

SET-XP® Allowable Tension and Shear Loads — Deformed Reinforcing Bar Based on Steel Strength¹

		O .	0			
	Rebar Size	Tensile Stress Area (in.²)	Tension Load (lb.) Based on Steel Strength		Shear Load (lb.) Based on Steel Strength	
			ASTM A615 Grade 40 ²	ASTM A615 Grade 60 ³	ASTM A615 Grade 40 ^{4,5}	ASTM A615 Grade 60 ^{4,6}
	#3	0.11	2,200	2,640	1,310	1,685
	#4	0.20	4,000	4,800	2,380	3,060
	#5	0.31	6,200	7,440	3,690	4,745

- 1. Allowable load shall be the lesser of bond values given on pp. 43, 43 or 43 and steel values in the table above.
- 2. Allowable Tension Steel Strength is based on AC58 Section 3.3.3 (20,000 psi x tensile stress area) for Grade 40 rebar.
- $3.\,Allowable\,\, Tension\,\, Steel\,\, Strength\,\, is\,\, based\,\, on\,\, AC58\,\, Section\,\, 3.3.3\,\, (24,000\,\, psi\,\, x\,\, tensile\,\, stress\,\, area)\,\, for\,\, Grade\,\, 60\,\, rebar.$
- 4. Allowable Shear Steel Strength is based on AC58 Section 3.3.3 ($F_V = 0.17 \times F_U \times Tensile Stress Area.$)
- 5. $F_u = 70,000$ psi for Grade 40 rebar.
- 6. $F_u = 90,000$ psi for Grade 60 rebar.

C-A-2021 @2021 SIMPSON STRONG-TIE COMPANY INC.