SET-3G[™] High-Strength Epoxy Adhesive

SET-3G is the latest innovation in epoxy anchoring adhesives with high design strength and proven performance. SET-3G is a 1:1 ratio, two-component, anchoring adhesive for concrete (cracked and uncracked). SET-3G installs and performs in a variety of environmental conditions and temperature extremes.

Features

- Exceptional performance superior bond strengths permit ductile solutions in high seismic areas
- Design flexibility improved sustained load performance at elevated temperature
- Jobsite versatility can be specified for all base material conditions when in-service temperatures range from -40°F (-40°C) to 176°F (80°C)
- Recognized per ICC ES AC308 for post-installed rebar development and splice length design provisions
- Code listed for installation with the Speed Clean[™] DXS, dustless drilling system without further hole cleaning

Product Information

Mix Ratio/Type	1:1 ероху
Mixed Color	Gray
Base Materials	Concrete - cracked and uncracked
Base Material Conditions	Dry, water-saturated, water-filled
Anchor Type	Threaded rod or rebar
Substrate Installation Temperature	40°F (4°C) to 100°F (38°C)
In-Service Temperature Range	-40°F (-40°C) to 176°F (80°C)
Storage Temperature	45°F (7°C) and 90°F (32°C)
Shelf Life	24 months
Volatile Organic Compound (VOC)	2 g/L
Chemical Resistance	See pp. 268–269
Manufactured in the USA using global	materials

Test Criteria

SET-3G has been tested in accordance with ICC-ES AC308, ACI 355.4 and applicable ASTM test methods.

Code Reports, Standards and Compliance

Concrete — ICC-ES ESR-4057 (including post-installed rebar connections and City of LA); FL15730.
Masonry — coming 2021.
ASTM C881 and AASHTO M235 — Types I/IV and II/V, Grade 3, Class B&C.
UL Certification — CDPH Standard Method v1.2.
NSF/ANSI/CAN 61 (216 in.² / 1,000 gal.).

SIMPSON

Strong-I

SET-3G Adhesive

Installation Instructions

Installation instructions are located at the following locations: pp. 64–67; product packaging; or **strongtie.com/set3g**.

• Hole cleaning brushes are located on p. 68.

SET-3G Adhesive Cartridge System

	artilage eyeteini				
Model No.	Capacity (ounces)	Cartridge Type	Carton Quantity	Dispensing Tool(s)	Mixing Nozzle ³
SET3G101	8.5	Coaxial	12	CDT10S	
SET3G22-N1	22	Side-by-side	10	EDT22S, EDTA22P, EDTA22CKT	EMN22I
SET3G56	56	Side-by-side	6	EDTA56P	

1. One EMN22I mixing nozzle and one extension are supplied with each cartridge.

2. Cartridge estimation guidelines are available at strongtie.com/softwareandwebapplications/category.

3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair SET-3G adhesive performance.

4. Use of rodless pneumatic tools to dispense single-tube, coaxial adhesive cartridges is prohibited.

SET-3G[™] High-Strength Epoxy Adhesive

SET-3G Cure Schedule^{1,2}

Concrete Te	emperature	Gel Time	Cure Time
(°F)	(°C)	(min.)	(hr.)
40	4	120	192
50	10	75	72
60	16	50	48
70	21	35	24
90	32	25	24
100	38	15	24

For SI: 1°F = (°C x %) + 32.

1. For water-saturated concrete and water-filled holes, the cure times shall be doubled.

2. For installation of anchors in concrete where the temperature is below 70°F (21°C),

the adhesive must be conditioned to a minimum temperature of 70°F (21°C).

SET-3G Typical Properties

	Dronorty	Class B	Class C	Test
	Property	(40°–60°F)	(>60°F)	Method
Consistency		Non-sag	Non-sag	ASTM C881
	Hardened to Hardened Concrete, 2-Day Cure ¹	3,700 psi	3,300 psi	
Bond Strength, Slant Shear	Hardened to Hardened Concrete, 14-Day Cure ¹	3,850 psi	3,350 psi	ASTM C882
	Fresh to Hardened Concrete, 14-Day Cure ²	2,750 psi	2,750 psi	
Compressive Yield Strength, 7	essive Yield Strength, 7-Day Cure ²		15,350 psi	ASTM D695
Compressive Modulus, 7-Day	Cure ²	650,000 psi	992,000 psi	ASTM D695
Heat Deflection Temperature,	7-Day Cure ²	147°F (64°C)		ASTM D648
Glass Transition Temperature,	Transition Temperature, 7-Day Cure ²		(65°C)	ASTM E1356
Decomposition Temperature, 2	24-Hour Cure ²	500°F	(260°C)	ASTM E2550
Water Absorption, 24-Hours, 7	7-Day Cure ²	0.1	3%	ASTM D570
Shore D Hardness, 24-Hour C	Ure ²	8	4	ASTM D2240
Linear Coefficient of Shrinkage, 7-Day Cure ²		0.002	ASTM D2566	
Coefficient of Thermal Expans	ion ²	2.3 x 10 ⁻	⁵ in./in.°F	ASTM C531

1. Material and curing conditions: Class B at 40° \pm 2°F, Class C at 60° \pm 2°F.

2. Material and curing conditions: 73° \pm 2°F.

C-A-2021 @ 2021 SIMPSON STRONG-TIE COMPANY INC.

SET-3G Installation Information and Additional Data for Threaded Rod and Rebar¹

Characteristic	Symbol	Units	Nominal Anchor Diameter da (in.) / Rebar Size							
Characteristic	Symbol		<u>%</u> / #3	1⁄2 / #4	5% / #5	3⁄4 / #6	7∕8 / # 7	1 / #8	1¼/#10	
Installation Information										
Drill Bit Diameter for Threaded Rod	d _{hole}	in.	7⁄16	9⁄16	11/16	7⁄8	1	1 1⁄8	1 3⁄8	
Drill Bit Diameter for Rebar	d _{hole}	in.	1⁄2	5⁄8	3⁄4	7⁄8	1	1 1/8	1 3⁄8	
Maximum Tightening Torque	Tinst	ftlb.	15	30	60	100	125	150	200	
Minimum Embedment Depth	h _{ef, min}	in.	23⁄8	23⁄4	31⁄8	31⁄2	3¾	4	5	
Maximum Embedment Depth	h _{ef, max}	in.	71/2	10	12½	15	17½	20	25	
Minimum Concrete Thickness	h _{min}	in.	h _{ef} -	- 1¼			h _{ef} + 2d _{hole}			
Critical Edge Distance	Cac	in.	See footnote 2							
Minimum Edge Distance	C _{min}	in.	13⁄4 23⁄4						2¾	
Minimum Anchor Spacing	S _{min}	in.	1 21/2 3 6						6	

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

 $2.c_{ac} = h_{ef}(\tau_{k,uncr}/1,160)^{0.4} \times [3.1 - 0.7(h/h_{ef})]$, where:

 $[h/h_{ef}] \le 2.4$

 $\tau_{k,uncr}$ = the characteristic bond strength in uncracked concrete, given in the tables that follow $\leq k_{uncr}((h_{ef} \times f_c)^{0.5}/(\pi \times d_a))$

h = the member thickness (inches)

 h_{ef} = the embedment depth (inches)

 d_a = nominal anchor diameter

SIMPSON

Strong-Tie

23

SET-3G[™] Design Information — Concrete

SET	-3G Tension Strength Desig	gn Data for Threaded Rod ^{1,8}						IBC			
	04		0h.al	11	Nominal Rod Diameter (in.)						
	Characte	Pristic	Symbol	Units	3⁄8	1⁄2	5⁄8	3⁄4	7⁄8	1	1¼
		Steel Stren	gth in Tensi	ion							
Min	imum Tensile Stress Area		A _{se}	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969
Tens	sion Resistance of Steel — ASTM F155	4, Grade 36			4,525	8,235	13,110	19,370	26,795	35,150	56,200
Tens	sion Resistance of Steel — ASTM F155	4, Grade 55			5,850	10,650	16,950	25,050	34,650	45,450	72,675
Tens	sion Resistance of Steel — ASTM A193	, Grade B7		lb.	9,750	17,750	28,250	41,750	57,750	75,750	121,125
	sion Resistance of Steel — Stainless Stee es 304 and 316)	I ASTM A193, Grade B8 and B8M	N _{sa}		4,445	8,095	12,880	19,040	26,335	34,540	55,235
Tens	sion Resistance of Steel — Stainless St	eel ASTM F593 CW (Types 304 and 316)]		7,800	14,200	22,600	28,390	39,270	51,510	82,365
Tens	sion Resistance of Steel — Stainless St	eel ASTM A193, Grade B6 (Type 410)]		8,580	15,620	24,860	36,740	50,820	66,660	106,590
Stre	ngth Reduction Factor for Tension — S	teel Failure	φ	—				0.755			
		Concrete Breakout Strength in T	ension (2,5	00 psi :	≤ f' _C ≤ 8,0)00 psi)					
Effe	ctiveness Factor for Cracked Concrete		k _{c,cr}	—				17			
Effe	ctiveness Factor for Uncracked Concrete	е	k _{c,uncr}	—				24			
Stre	ngth Reduction Factor — Concrete Bre	akout Failure in Tension	φ	—				0.656			
		Bond Strength in Tension (2,500 psi ≤	f' _C ≤ 8	,000 psi) ⁷						
Min	imum Embedment		h _{ef,min}	in.	23⁄8	23⁄4	31⁄8	31⁄2	3¾	4	5
Max	imum Embedment		h _{ef,max}	in.	7 1⁄2	10	121⁄2	15	171⁄2	20	25
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁹	τ _{k,cr}	psi	1,448	1,402	1,356	1,310	1,265	1,219	1,128
ц		Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	2,357	2,260	2,162	2,064	1,967	1,868	1,672
ecti	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete ⁹	$ au_{k,cr}$	psi	1,201	1,163	1,125	1,087	1,050	1,012	936
Continuous Inspection		Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	1,957	1,876	1,795	1,713	1,632	1,551	1,388
nor	Anchor Category	Dry Concrete		-		-	-	1		-	
ntin	Strength Reduction Factor	Dry Concrete	$\phi_{dry,ci}$					0.6510			
S	Anchor Category	Water-Saturated Concrete, or Water-Filled Hole		_	:	3			2		
	Strength Reduction Factor	Water-Saturated Concrete, or Water-Filled Hole	$\phi_{\textit{wet,ci}}$	_	0.4	15 ¹⁰		1	0.5510	1	
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁹ Characteristic Bond Strength	τ _{k,cr}	psi	1,346	1,304	1,356	1,310	1,265	1,219	1,128
_		in Uncracked Concrete9	$ au_{k,uncr}$	psi	2,192	2,102	2,162	2,064	1,967	1,868	1,672
Periodic Inspection	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete ⁹ Characteristic Bond Strength	τ _{k,cr}	psi	1,117	1,082	1,125	1087	1,050	1,012	936
lnsp		in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	1,820	1,744	1,795	1,713	1,632	1,551	1,388
dic	응 Anchor Category Dry Concrete			<u> </u>		2			1		
erio	Strength Reduction Factor	Dry Concrete	$\phi_{dry,pi}$	_	0.5	5510			0.6510		
•	Anchor Category	Water-Saturated Concrete, or Water-Filled Hole		_				3			
	Strength Reduction Factor	Water-Saturated Concrete, or Water-Filled Hole	$\phi_{wet,pi}$	_				0.4510			
Red	uction Factor for Seismic Tension		$\alpha_{N,seis^{11}}$	-	1.0	0.9	1.0	1.0	1.0	1.0	1.0

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

2. Temperature Range A: Maximum short-term temperature = 160°F, maximum long-term temperature = 110°F.

3. Temperature Range B: Maximum short-term temperature = 176°F, maximum long-term temperature = 110°F.

4. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).

Long-term temperatures are roughly constant over significant periods of time.

5. The tabulated value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used.

If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of \$\phi\$.

6. The tabulated value of φ applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4 (c) for Condition B to determine the appropriate value of φ.

7. Bond strength values shown are for normal-weight concrete having a compressive strength of f'_c = 2,500 psi. For higher compressive strengths up to 8,000 psi,

the tabulated characteristic bond strength may be increased by a factor of (f'_c/2,500)^{0.35} for uncracked concrete and a factor of (f'_c/2,500)^{0.24} for cracked concrete. 8. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

9. Characteristic bond strength values are for sustained loads, including dead and live loads.

10. The tabulated value of
ø applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used,

refer to ACI 318 D.4.4(c) for Condition B to determine the appropriate value of ϕ .

11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by $\alpha_{N, seis}$.

SIMPSO

Strong-Tie

SIMPSON Strong-Tie

Adhesive Anchors

SET-3G[™] Design Information — Concrete

SET-3G Tension Strength Design Data for Rebar^{1,8}

	1-3G Tension Streng	gth Design Data for Rebar ^{1,0}								ില് 🗋	
		Characteristic	Symbol	Units	Rebar Size						
			Symbol	Units	#3	#4	#5	#6	#7	#8	#10
		Steel Str	rength in Te	nsion	1	1		-	r		
Μ	inimum Tensile Stress Area		Ase	in. ²	0.11	0.20	0.31	0.44	0.60	0.79	1.27
Te	ension Resistance of Steel —	Rebar (ASTM A615 Grade 60)	N	lb.	9,900	18,000	27,900	39,600	54,000	71,100	114,300
Te	ension Resistance of Steel —	Rebar (ASTM A706 Grade 60)	N _{sa}	ID.	8,800	16,000	24,800	35,200	48,000	63,200	101,600
St	rength Reduction Factor for T	ension — Steel Failure	φ	_				0.755			
		Concrete Breakout Strength i	n Tension (2	2,500 psi	$i \le f'_{C} \le 8$,000 psi)					
Ef	fectiveness Factor for Cracke	d Concrete	K _{c,cr}					17			
Ef	fectiveness Factor for Uncrac	ked Concrete	k _{c,uncr}					24			
St	rength Reduction Factor — (Concrete Breakout Failure in Tension	φ					0.656			
		Bond Strength in Tensi	on (2,500 p	si ≤ f' _c ≤	8,000 ps	i) ⁷			r		
М	inimum Embedment		h _{ef,min}	in.	23⁄8	2¾	31⁄8	3½	3¾	4	5
Μ	aximum Embedment		h _{ef,max}	in.	71⁄2	10	12½	15	17½	20	25
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁹	τ _{k,cr}	psi	1,448	1,402	1,356	1,310	1,265	1,219	1,128
	Temperature hange A	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	2,269	2,145	2,022	1,898	1,774	1,651	1,403
spection	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete ⁹	τ _{k,cr}	psi	1,201	1,163	1,125	1,087	1,050	1,012	936
Continuous Inspection	iomporataro nango b	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	1,883	1,781	1,678	1,575	1,473	1,370	1,165
	Anchor Category	Dry Concrete						1			
5	Strength Reduction Factor	Dry Concrete	$\phi_{dry,ci}$					0.6510			
	Anchor Category	Water-Saturated Concrete, or Water-Filled Hole	_			3			2		
	Strength Reduction Factor	Water-Saturated Concrete, or Water-Filled Hole	$\phi_{wet,ci}$	—	0.4	15 ¹⁰			0.5510		
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁹	τ _{k,cr}	psi	1,346	1,304	1,356	1,310	1,265	1,219	1,128
_	Temperature hange A	Characteristic Bond Strength in Uncracked Concrete ⁹	τ _{k,uncr}	psi	2,110	1,995	2,022	1,898	1,774	1,651	1,403
Dectior	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete9	τ _{k,cr}	psi	1,117	1,082	1,125	1,087	1,050	1,012	936
Periodic Inspection		Characteristic Bond Strength in Uncracked Concrete ⁹	τ _{k,uncr}	psi	1,751	1,656	1,678	1,575	1,473	1,370	1,165
Brioc	Anchor Category	Dry Concrete	—	_		2			1		
า้	Strength Reduction Factor	Dry Concrete	$\phi_{dry,pi}$		0.5	5 ¹⁰			0.6510		
	Anchor Category	Water-Saturated Concrete, or Water-Filled Hole	—	_				3			
	Strength Reduction Factor	Water-Saturated Concrete, or Water-Filled Hole	$\phi_{wet,pi}$	_				0.4510			
Re	eduction Factor for Seismic Te	ension	$\alpha_{N,seis}$ ¹¹	_	1.0	1.0	1.0	1.0	1.0	1.0	1.0

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

2. Temperature Range A: Maximum short-term temperature = 160°F, maximum long-term temperature = 110°F.

3. Temperature Range B: Maximum short-term temperature = 176°F, maximum long-term temperature = 110°F.

4. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).

Long-term temperatures are roughly constant over significant periods of time.

5. The tabulated value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used.

If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

6. The tabulated value of φ applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4(c) for Condition B to determine the appropriate value of φ.

7. Bond strength values shown are for normal-weight concrete having a compressive strength of f'_c = 2,500 psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of (f'_c/2,500)^{0.36} for uncracked concrete and a factor of (f'_c/2,500)^{0.25} for cracked concrete.

8. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

9. Characteristic bond strength values are for sustained loads, including dead and live loads.

10. The tabulated value of *φ* applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4(c) for Condition B to determine the appropriate value of *φ*.

11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by $\alpha_{N,seis}$.

SET-3G[™] Design Information — Concrete

SET-3G Shear Strength Design Data for Threaded Rod¹

						_				
Characteristic	Symbol	Units		Nominal Rod Diameter (in.)						
Characteristic	Symbol	Units	3⁄8	1⁄2	5⁄8	3⁄4	7⁄8	1	1¼	
	Steel St	trength in Sl	near	·						
Minimum Shear Stress Area	Ase	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
Shear Resistance of Steel — ASTM F1554, Grade 36			2,715	4,940	7,865	11,625	16,080	21,090	33,720	
Shear Resistance of Steel — ASTM F1554, Grade 55	V _{sa}	lb.	3,510	6,390	10,170	15,030	20,790	27,270	43,605	
Shear Resistance of Steel — ASTM A193, Grade B7			5,850	10,650	16,950	25,050	34,650	45,450	72,675	
Reduction factor for Seismic Shear — Carbon Streel	$lpha_{V\!,seis}{}^4$	-			0.75			1	.0	
Shear Resistance of Steel — Stainless Steel ASTM A193, Grade B8 and B8M (Types 304 and 316)			2,665	4,855	7,730	11,425	15,800	20,725	33,140	
Shear Resistance of Steel — Stainless Steel ASTM F593 CW (Types 304 and 316)	V _{sa}	lb.	4,680	8,520	13,560	17,035	23,560	30,905	49,420	
Shear Resistance of Steel — Stainless Steel ASTM A193, Grade B6 (Type 410)			5,150	9,370	14,915	22,040	30,490	40,000	63,955	
Reduction factor for Seismic Shear — Stainless Steel	$\alpha_{V,seis}^4$	_	0.	.80		0.75		1	.0	
Strength Reduction Factor for Shear — Steel Failure	φ	_				0.65 ²				
(Concrete Brea	kout Streng	th in Shear							
Outside Diameter of Anchor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-Bearing Length of Anchor in Shear	l _e	in.		Mi	n. of <i>h_{ef}</i> and	d 8 times ar	nchor diame	eter		
Strength Reduction Factor for Shear — Breakout Failure	φ	—				0.70 ³				
	Concrete Pry	out Strength	in Shear/							
Coefficient for Pryout Strength	k _{cp}	in.		1.	0 for <i>h_{ef} < 1</i>	2.50"; 2.0 f	for $h_{ef} \ge 2.5$	i0"		
Strength Reduction Factor for Shear — Breakout Failure	φ	_				0.70 ³				

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

2. The tabulated value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used.

If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The tabulated value of ϕ applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of

ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4 (c) for Condition B to determine the appropriate value of ϕ .

4. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by α_{Vseis} for the corresponding anchor steel type.

SIMPSON Strong-Tie

LW

IBC 🗭 🕄

SET-3G[™] Design Information — Concrete

SET-3G Shear Strength Design Data for Rebar¹

Characteristic	Symbol	Units			Nominal Rod Diameter (in.)					
	Symbol		#3	#4	#5	#6	#7	#8	#10	
Ste	el Strength	in Shea	r							
Minimum Shear Stress Area	Ase	in.2	0.110	0.200	0.310	0.440	0.600	0.790	1.270	
Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)		lb.	5,940	10,800	16,740	23,760	32,400	42,660	68,580	
Shear Resistance of Steel — Rebar (ASTM A706 Grade 60)	- V _{sa}	ID.	5,280	9,600	14,880	21,120	28,800	37,920	60,960	
Reduction Factor for Seismic Shear — Rebar (ASTM A615 Grade 60)				0.60					0.8	
Reduction Factor for Seismic Shear — Rebar (ASTM A706 Grade 60)	$\alpha_{V,seis}$		0.60					0.8		
Strength Reduction Factor for Shear — Steel Failure	φ	_				0.65 ²				
Concrete E	Breakout St	trength in	n Shear							
Outside Diameter of Anchor	d _a	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-Bearing Length of Anchor in Shear	le	in.		Min	. of <i>h_{ef}</i> and	d 8 times a	nchor diam	eter		
Strength Reduction Factor for Shear — Breakout Failure	φ	_				0.70 ³				
Concrete	Pryout Str	ength in	Shear							
Coefficient for Pryout Strengthk_{cp}in.1.0 for $h_{ef} < 2.50$ "; 2.0 for $h_{ef} \ge 2.50$ "				50"						
Strength Reduction Factor for Shear — Breakout Failure	φ	_				0.70 ³				

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

2. The tabulated value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used.

If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The tabulated value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4 (c) for Condition B to determine the appropriate value of ϕ .

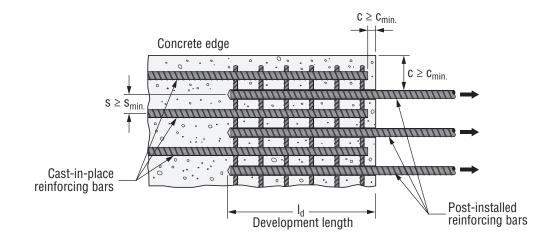
4. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by α_{Vseis} for the corresponding anchor steel type.

For additional load tables, visit strongtie.com/set3g.

Anchor Designer[™] Software for ACI 318, ETAG and CSA

Simpson Strong-Tie[®] Anchor Designer software accurately analyzes existing design or suggests anchor solutions based on user-defined design elements in cracked and uncracked concrete conditions.

SET-3G[™] Design Information — Concrete


SIMPSON Strong-Tie

LW

IBC

SET-3G is code listed under IBC/IRC for cracked and uncracked concrete per ICC-ES ESR-4057.

In March 2020, the evaluation report was updated for SET-3G to be an equivalent to cast-in-place reinforcing bars governed by ACI 318 and IBC Chapter 19.

SET-3G Development Length for Rebar Dowel

Rebar	Drill Bit	Clear Cover,	Development Length, in. (mm)						
Size	Diameter (in.)	in. (mm)	f ^ı _c = 2,500 psi (17.2 MPa) Concrete	f ^ı _c = 3,000 psi (20.7 MPa) Concrete	f ^ı _c = 4,000 psi (27.6 MPa) Concrete	f ^ı _c = 6,000 psi (41.4 MPa) Concrete	f ^ı c = 8,000 psi (55.2 MPa) Concrete		
#3	1⁄2	1.125 (29)	12 (305)	12 (305)	12 (305)	12 (305)	12 (305)		
#4	5⁄8	1.125 (29)	14.4 (366)	14 (356)	12 (305)	12 (305)	12 (305)		
#5	3⁄4	1.125 (29)	18 (457)	17 (432)	14.2 (361)	12 (305)	12 (305)		
#6	7⁄8	1.125 (29)	21.6 (549)	20 (508)	17.1 (434)	14 (356)	13 (330)		
#7	1	2.30 (58)	31.5 (800)	29 (737)	25 (635)	21 (533)	18 (457)		
#8	11⁄8	2.30 (58)	36 (914)	33 (838)	28.5 (724)	24 (610)	21 (533)		
#9	1%	2.30 (58)	40.5 (1,029)	38 (965)	32 (813)	27 (686)	23 (584)		
#10	13⁄8	2.30 (58)	45 (1,143)	42 (1,067)	35.6 (904)	30 (762)	26 (660)		
#11	13⁄4	2.30 (58)	51 (1,295)	47 (1,194)	41 (1,041)	33 (838)	29 (737)		

1. Tabulated development lengths are for static, wind and seismic load cases in Seismic Design Category A and B.

Development lengths in Seismic Design Category C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable. 2. Rebar is assumed to be ASTM A615 Grade 60 or A706 ($f_V = 60,000$ psi). For rebar with a higher yield strength, multiply tabulated values by $f_V/60,000$ psi.

3. Concrete is assumed to be normal-weight concrete. For lightweight concrete, multiply tabulated values by 1.33.

4. Tabulated values assume bottom cover less that 12" cast below rebars ($\Psi_1 = 1.0$).

5. Uncoated rebar must be used.

6. The value of Ktr is assumed to be 0. Refer to ACl318-14 Section 25.4.2.3 or ACl 318-11 Section 12.2.3.