Beam and Glulam Top-Flange Hangers

Designed to support large members typically found in glulam beam construction.
Material: Stirrup -7 gauge; LEG/MEG TF - 7 gauge; all other TF - 3 gauge
Finish: Simpson Strong-Tie gray paint. Some products available hot-dip galvanized or in black powder coat.

Installation:

- Use all specified fasteners: see General Notes
- Maintain minimum 4D end distance and edge distance from bolt to end of header and nearest loaded edge per NDS requirements

Options:

Skewed Seat - Top-Flange Models Only

- The LEG/MEG/EG series can be skewed up to 45°. The maximum allowable load is $10,000 \mathrm{lb}$. for LEG and MEG, 14,250 lb. for EG.

Sloped Seat - Top-Flange Models Only

- The LEG/MEG/EG series can be sloped up to 45°. The maximum allowable load is $9,665 \mathrm{lb}$.; see illustration.
No Sloped and Skewed Combo Available.

Offset Top Flange

- The LEG/MEG (only) top flange may be offset left or right for placement at the end of a header (see illustration). The maximum allowable load is $5,665 \mathrm{lb}$. (Min. $\mathrm{H}=11^{\prime \prime}$ for MEG, 9 " for LEG).
- No skews allowed on offset hangers.
- Models available without top flanges; see table loads.
Codes: See p. 11 for Code Reference Key Chart

LEG/MEG/EG Without Top Flange (see options)

LEG and MEG

EG with " H " dimension less than the face plate height. The EG's back plate is always $17^{1 / 2} 2^{\prime \prime}$, regardless of the stirrup height.

Typical LEG/MEG Top Flange Offset Left

Typical LEG Sloped Down Installation (MEG/EG similar)

Joist or Purlin Size (in.)	Model No.	Dimensions (in.)					Min. Header Depth (in.)	Bolts				Allowable Loads						Code Ref.
		L	W	Min. H	Max.H	TF		Header		Joist		Without Top Flange		Top Flange No Triangle Theory		Top Flange Triangle Theory		
								Qty.	Dia. (in.)	Qty.	Dia. (in.)	Floor (100)	$\begin{aligned} & \text { Roof } \\ & \text { (125) } \end{aligned}$	Floor (100)	$\begin{aligned} & \text { Roof } \\ & \text { (125) } \end{aligned}$	Floor (100)	Roof (125)	
31⁄8 LAM	LEG3	12	$31 / 4$	9	331/2	$21 / 2$	10	4	$3 / 4$	2	$3 / 4$	3,465	4,330	13,045	13,870	13,045	13,870	$\begin{aligned} & \text { IBC, } \\ & \text { FL, LA } \end{aligned}$
51⁄8 LAM	LEG5	12	$51 / 4$	9	321/2	$21 / 2$	10	4	$3 / 4$	2	$3 / 4$	3,465	4,330	16,290	16,290	13,045	13,870	
	MEG5	12	$51 / 4$	9	321/2	$21 / 2$	13	6	$3 / 4$	2	$3 / 4$	5,170	6,460	19,710	19,710	14,515	14,515	
	EG5	113/4	51/4	11	321/2	$21 / 2$	20	8	1	2	1	8,870	11,085	20,895	21,815	17,895	19,875	
63/4 LAM	LEG7	12	67/8	9	$311 / 2$	$21 / 2$	10	4	$3 / 4$	2	$3 / 4$	3,465	4,330	16,290	16,290	13,045	13,870	
	MEG7	12	67/8	9	$311 / 2$	$21 / 2$	13	6	$3 / 4$	2	$3 / 4$	5,170	6,460	19,710	19,710	14,515	14,515	
	EG7	131/2	67/8	11	$311 / 2$	$21 / 2$	20	8	1	2	1	8,870	11,085	25,320	25,835	19,305	21,300	
83/4 LAM	EG9	151/2	87/8	11	301/2	$21 / 2$	20	8	1	2	1	8,870	11,085	25,320	25,835	20,895	22,895	

1. Roof loads are 125% of floor loads unless limited by other criteria. Floor loads may be adjusted for load durations according to the code provided they do not exceed those in the roof column.
2. Allowable loads assume a carrying member width of $5 \frac{1}{1 / 8}$.
3. Specify H dimension.
4. Triangle Theory: Some code jurisdictions allow only half of the top-flange bearing area to be considered when performing a top-flange hanger calculation, as there is non-uniform stress under the top flange (presumed to be a triangular-shaped distribution). Therefore, loads are published above using the calculated "Triangle Theory." Loads are also published in the "No Triangle Theory" columns, which are based on calculations assuming full bearing on the top flange which do not exceed the tested value with a reduction factor of 3 .
