Collated Metal Screws

Strong-Drive° PHSD **FRAMING-TO-CFS** Screw

Common Applications:

Cold-formed steel framing and sheet steel sheathing to cold-formed steel

Features:

- Pan head
- #2 square drive (driver bit in each box; replacement bit model BIT2S)
- #2 drill point
- Yellow zinc coating
- Straight collation

Codes/Standards: ASTM C1513 compliant, City of LA RR25670

For Technical Data and Loads, see Technical Supplement

Yellow Zinc Coating

Length (in.)	Shank Size	Threads Per Inch	Point Size	Carton Quantity	Model No.	PROPHG2
3⁄4	#8	18	2	2,500	PHSD34S0818	\checkmark

Strong-Drive° FPHSD **FRAMING-TO-CFS** Screw

Common Applications:

Cold-formed steel framing and sheet steel sheathing to cold form steel

Features:

- Flat pan head
- #3 square drive (driver bit in each box; replacement bit model BIT3S)
- #3 drill point

- Clear zinc coating
 Straight collation
- Straight collation
- This screw is also available in bulk for hand-drive installation; see p. 95 for details

Codes/Standards: ASTM C1513 compliant, ICC-ES ESR 3006

For Technical Data and Loads, see Technical Supplement

Clear Zinc Coating

	Joouting						- // -
Length (in.)	Shank Size	Threads Per Inch	Point Size	Carton Quantity	Model No.	PROPP150G2	PROPHG2
3⁄4	#10	16	3	2,500	FPHSD34S1016	\checkmark	\checkmark
3⁄4	#12	14	3	2,500	FPHSD34S1214	\checkmark	\checkmark

0

CFS Systems

PHSD/FPHSD Screws

For more information, see p. 208, C-F-2019 Fastening Systems Catalog

Strong-Drive[®] PHSD FRAMING-TO-CFS Screw

Strong-Drive® FPHSD FRAMING-TO-CFS Screw

PHSD (#8) Screw — (Sheet-Steel Sheathing to CFS) Nominal Shear Strength (R_n) for Wind (W) and Seismic (S) for Shearwalls¹ (lb./ft.)

Assembly Description	Max. Aspect Ratio	Fast	ener Spacing (ir	Designation Thickness ⁵ of Stud, Track and Blocking ⁷		
	(h/w)	6	4	3	2	(mil)
0.018" sheet steel, one side	2:1	485 (W) 390 (S)	—	_	—	33 (min.)
0.007" about steel, and side	4:1	—	1,000	1,085	1,170	43 (min.)
0.027 Sheet steel, one side	2:1 ³	647	710	778	845	33 (min.)
0.018" sheet steel, both sides	2:1	970 (W) 780 (S)	—	_	—	33 (min.)
0.007" about stool, both sides	4:1	—	2,000	2,170	2,340	43 (min.)
	2:1 ³	1,294	1,420	1,556	1,690	33 (min.)

1. Nominal strength shall be multiplied by the resistance factor ($\phi = 0.6$, LRFD Seismic, $\phi = 0.65$, LRFD Wind) to determine design strength or divided by the safety factor ($\Omega = 2.5$, ASD Seismic, $\Omega = 2.0$, ASD Wind) to determine allowable strength.

2. Screws in the field of the panel shall be installed 12" (305 mm) on center (o.c.).

3. Shearwall height-to-width aspect ratio (h/w) greater than 2:1, but not exceeding 4:1, shall be permitted provided the nominal strength values are multiplied by 2w/h.

4. Wall studs and track shall be of ASTM A1003 Structural Grade 33 (Grade 230) Type H steel for members with a designation thickness of 33 and 43 mil.

5. In lieu of blocking, panel edges shall be permitted to be overlapped and attached to each other with screw spacing as required for panel edges. Where such a connection is used, tabulated design values shall be reduced 30%.

6. Maximum stud spacing 24" o.c.

C-F-2019TECHSUP @ 2019 SIMPSON STRONG-TIE COMPANY INC

7. Blocking, if applicable, shall be a minimum 33 mil, 11/2" width.

8. Table based on Table C2.1-1 AISI S213 Standard North American Standard for Cold-Formed Steel Framing — Lateral Design 2007 Edition with Supplement No. 1 and Commentary.

FPHSD (#10) Screw — (Sheet-Steel Sheathing to CFS) Nominal Shear Strength (R_n) for Wind (W) and Seismic (S) for Shearwalls¹ (lb./ft.)

Assembly Description	Max. Aspect Ratio	Faste	ener Spacing (ir	Designation Thickness⁵ of Stud, Track and Blocking ⁷				
	(h/w)	6	4	3	2	(mil)		
0.018" sheet steel, one side	2:1	485 (W) 390 (S)	—	—	—	33 (min.)		
0.00711 sheet steel are side	4:1	—	1,000	1,085	1,170	43 (min.)		
0.027 Sheet Steel, one side	2:1 ³	647	710	778	845	33 (min.)		
0.018" sheet steel, both sides	2:1	970 (W) 780 (S)	—	—	—	33 (min.)		
0.007" about staal, both sides	4:1	—	2,000	2,170	2,340	43 (min.)		
	2:1 ³	1,294	1,420	1,556	1,690	33 (min.)		

1. Nominal strength shall be multiplied by the resistance factor ($\phi = 0.6$, LRFD Seismic, $\phi = 0.65$, LRFD Wind) to determine design strength or divided by the safety factor ($\Omega = 2.5$, ASD Seismic, $\Omega = 2.0$, ASD Wind) to determine allowable strength.

2. Screws in the field of the panel shall be installed 12" (305 mm) on center (o.c.).

3. Shearwall height-to-width aspect ratio (h/w) greater than 2:1, but not exceeding 4:1, shall be permitted provided the nominal strength values are multiplied by 2w/h.

4. Wall studs and track shall be of ASTM A1003 Structural Grade 33 (Grade 230) Type H steel for members with a designation thickness of 33 and 43 mil.

5. In lieu of blocking, panel edges shall be permitted to be overlapped and attached to each other with screw spacing as required for panel edges. Where such a connection is used, tabulated design values shall be reduced 30%.

6. Maximum stud spacing 24" o.c.

7. Blocking, if applicable, shall be a minimum 33 mil 11/2" width.

Table based on Table C2.1-1 AISI S213 Standard North American Standard for Cold-Formed Steel Framing
– Lateral Design 2007
Edition with Supplement No. 1 and Commentary.

Strong-I

CFS Connections

Strong-Drive® PHSD FRAMING-TO-CFS Screw

Common Applications:

· Cold-formed steel framing and sheet-steel sheathing to cold-formed steel

Codes/Standards: ASTM C1513 compliant

For more information, see p. 208, C-F-2019 Fastening Systems Catalog

PHSD Screw — Cold-Formed Steel Member Connection Loads, Steel to Steel

Size (in.)				Refe	erence Shear	⁻ (lb.)	Refere	ence Pull-Ov	er (lb.)	Refer	ıt (lb.)	
	Model No.	Nominal Dia.	Load	Steel T	hickness: [m	nil (ga.)]	Steel T	hickness: [m	nil (ga.)]	Steel T	hickness: [m	iil (ga.)]
		(in.)	Description	27 (22)	33 (20)	43 (18)	27 (22)	33 (20)	43 (18)	27 (22)	33 (20)	43 (18)
			ASD load	181	235	305	220	345	390	67	125	133
#8-18 x ¾	PHSD34S0818	0.164	LRFD load	290	375	490	350	550	620	107	200	213
			Nominal strength	410	590	765	540	845	955	164	310	325

Screws and screw connections have been tested per AISI Standard Test Method S904 and S905. This screw is not recommended for 16 gauge and thicker steel. Provide a 1/8" diameter predrilled hole in 16 gauge and thicker steel, if this screw should be used.

- 2. The tabulated ASD and LRFD allowable loads for cold-formed steel (CFS) members are based on the lower of the screw strength or the strength of the screw in the connected members per AISI S100.
- 3. The safety factor is based on AISI S100-07.
- 4. The average ultimate/nominal values listed should not be used for design loads.
- 5. Values are based on CFS members with a minimum yield strength of F_{v} = 33 ksi and tensile strength of $F_u = 45$ ksi for 43 mil (18 ga.) to 27 mil (22 ga.), minimum yield strength of $F_V = 50$ ksi and $F_u = 65$ ksi for 54 mil (16 ga.) to 97 mil (12 ga.).
- 6. For design purposes, steel-sheet thicknesses are 0.0283" for 27 mil, 0.0346" for 33 mil, 0.0451" for 43 mil, 0.0566" for 54 mil, 0.0713" for 68 mil, and 0.1017 for 97 mil. The actual sheet thickness shall not be less than 95% of these design thicknesses as specified in AISI S100.

- 7. Screw diameters per AISI S200 General Provision Commentary Table D1.1. 8. Minimum required screw length is the lesser of 3/4" or the minimum length
- required for the screw to extend through the steel connection a minimum of three exposed threads per AISI S200 General Provisions Standard Section D1.3. 9. Screw head or washer diameter, d_w is 0.307".
- 10. The allowable load (ASD) values shown are not permitted to be increased for short-duration loads such as wind or earthquake loads.
- 11. The lower of the pull-over and pull-out allowable load should be used for tension desian.
- 12. The tabulated shear values are based on the thinner steel member in connection. Steel thickness for both members must be in the range of 12-22 gauge
- 13. See general load tables on p. 16 for screw strength.

Strong-Drive® FPHSD FRAMING-TO-CFS Screw

EPHSD - Cold-Formed Steel Member Connection Loads Steel to Steel

Common Application:

C-F-2019TECHSUP @ 2019 SIMPSON STRONG-TIE COMPANY INC

Cold-formed steel framing and sheet-steel sheathing to cold-formed steel

Codes/Standards: ASTM C1513 compliant, ICC-ES ESR-3006

For more information, see pp. 95 and 208, C-F-2019 Fastening Systems Catalog

230 390 590 845 1,295

L) 97 (12)

505

TTTOL	THOE COLOR METHOD CONNECTION ECONO.																			
	Model No.	Nominal Dia. (in.)		Reference Shear (lb.)				Reference Pull-Over (lb.)						Reference Pull-Out (Ib						
Size			Load Description	Steel Thickness: [mil (ga.)]					Steel Thickness: [mil (ga.)]					Steel Thickness: [mil (ga						
()				27 (22)	33 (20)	43 (18)	54 (16)	68 (14)	97 (12)	27 (22)	33 (20)	43 (18)	54 (16)	68 (14)	97 (12)	27 (22)	33 (20)	43 (18)	54 (16)	68 (14
			ASD load	175	235	380	570	570	570	280	365	485	695	740	740	76	95	156	240	340

#10-16 x ¾	FPHSD34S1016	0.190	LRFD load	280	375	605	855	855	855	445	585	775	1,110	1,110	1,110	123
			Nominal strength	395	535	860	1,305	1,305	1,305	685	895	1,190	1,705	2,215	2,215	190
			ASD load	205	260	410	610	610	610	240	330	430	630	840	1,125	76
#12-14 x ¾	FPHSD34S1214	0.216	LRFD load	330	420	650	975	975	975	390	530	685	1,005	1,340	1,690	123
			Nominal strength	485	610	930	1,385	1,385	1,385	595z	815	1,050	1,540	2,060	2,065	190
1 Scrowe a	nd connections h	ave heen	tested per AISI St	andar	d Math	nod		6	Minir	num r		decro	v long	th in th		r of 3/4

S904 and S905.

- 2. The tabulated ASD and LRFD allowable loads for cold-formed steel (CFS) members are based on the lower of the screw strength or the strength of the screw in the connected members per AISI S100.
- 3. Values are based on CFS members with a minimum yield strength of F_y = 33 ksi and tensile strength of Fu = 45 ksi for 43 mil (18 ga.) to 27 mil (22 ga.), minimum yield strength of $F_V = 50$ ksi and $F_u = 65$ ksi for 54 mil (16 ga.) to 97 mil (12 ga.).
- 4. For design purposes, steel sheet thicknesses are 0.0283" for 27 mil, 0.0346" for 33 mil, 0.0451" for 43 mil, 0.0566" for 54 mil, 0.0713" for 68 mil, and 0.1017" for 97 mil. The actual sheet thickness shall not be less than 95% of these design thicknesses as specified in AISI S100.
- 5. Screw diameters per AISI S200 General Provision Commentary Table D1.1.

4" or the minimum length required for the screw to extend through the steel connection a minimum of three exposed threads per AISI S200 General Provisions Standard Section D1.3.

151 250 380 545 805

230 385 585 840 1.235 530

95 159 240 345

151 255 385 550 855

- 7. Screw head d_w for #10 and #12 screws is 0.357".
- 8. The allowable load (ASD) values shown are not permitted to be increased for short-duration loads such as wind or earthquake loads.
- The lower of the pull-over and pull-out allowable load should be used for 9. tension design.
- 10. The tabulated shear values are based on the thinner steel member in connection. Steel thickness for both members must be in the range of 12-22 gauge
- 11. See the general load tables on p. 16 for screw strength.

Strong-Ti