Titen HD® Heavy-Duty Screw Anchor

Titen HD Installation Information and Additional Data¹

Characteristic	Symbol	Units	Nominal Anchor Diameter, d _a (in.)										
Gridi de let istic	Зуппон	Ullits	1,	/ 4	3,	8	1,	[/] 2	5,	/ 8		3/4	
			Installa	tion Info	rmation								
Drill Bit Diameter	d _{bit}	in.	1,	/ 4	3,	8	1,	⁄2	5,	⁄8	3/4		
Baseplate Clearance Hole Diameter	d_{c}	in.	3/8 1/2			5,	8	3/4			7/8		
Maximum Installation Torque	T _{inst,max}	ftlbf	24	4 ²	50) ²	6	5 ²	10	10 ²		150 ²	
Maximum Impact Wrench Torque Rating	T _{impact,max}	ftlbf	12	.5 ³	15	03	34	.03	34	·0³		385³	
Minimum Hole Depth	h _{hole}	in.	13/4	2%	23/4	31/2	3¾	41/2	41/2	6	41/2	6	6¾
Nominal Embedment Depth	h _{nom}	in.	1%	2½	2½	31/4	31/4	4	4	5½	4	5½	61/4
Critical Edge Distance	Cac	in.	3	6	211/16	35/8	3%16	41/2	41/2	6%	6	6%	75/16
Minimum Edge Distance	C _{min}	in.	1	1/2					13/4				
Minimum Spacing	S _{min}	in.	1	1/2			3				23/4	(3
Minimum Concrete Thickness	h _{min}	in.	31/4	3½	4	5	5	61/4	6	81/2	6	83/4	10
			Ado	ditional E	ata								
Anchor Category	Category	_						1					
Yield Strength	f _{ya}	psi	100	,000					97,000				
Tensile Strength	f _{uta}	psi	125	,000					110,000				
Minimum Tensile and Shear Stress Area	A _{se}	in²	0.0)42	0.0	99	0.1	83	0.2	276		0.414	
Axial Stiffness in Service Load Range — Uncracked Concrete	eta_{uncr}	lb./in.	202,000 672,000										
Axial Stiffness in Service Load Range — Cracked Concrete	eta_{cr}	lb./in.	173	173,000 345,000									

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 and ACI 318-11 Appendix D.

^{2.} T_{inst,max} is the maximum permitted installation torque for the embedment depth range covered by this table using a torque wrench.

^{3.} T_{impact,max} is the maximum permitted torque rating for impact wrenches for the embedment depth range covered by this table.

Titen HD® Design Information — Concrete

Titen HD Tension Strength Design Data¹

IBC 1		LW
-------	--	----

Characteristic	Symbol	Units				Nor	inal And	hor Diar	neter, d _a	(in.)				
Glidi deleti Sul	Syllibol	UIIILS	1,	/ 4	3,	/8	1	⁄2	5,	/ ₈		3/4		
Nominal Embedment Depth	h _{nom}	in.	15⁄8	2½	2½ 3¼ 3		31/4	4	4	5½	4	5½	61/4	
Steel Strength in Tens	ion — AC	l 318-1	9 17.6.1	, ACI 318	3-14 17.4	4.1 or AC	l 318-11	Section	n D.5.1					
Tension Resistance of Steel	N _{sa}	lb.	5,1	95	10,	890	20,	130	30,	360		45,540		
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}							0.65						
Concrete Breakout Strength in Tension ⁶ — ACI 318-19 17.6.2, ACI 318-14 17.4.2 or ACI 318-11 Section D.5.2														
Effective Embedment Depth	h _{ef}	in.	1.19	1.94	1.77	2.40	2.35	2.99	2.97	4.24	2.94	4.22	4.86	
Critical Edge Distance	Cac	in.	3	6	211/16	35/8	3%16	41/2	41/2	6%	6	6%	75/16	
Effectiveness Factor — Uncracked Concrete	k _{uncr}		30				24				27	24		
Effectiveness Factor — Cracked Concrete	k _{cr}	1						17						
Modification Factor	$\psi_{c,N}$							1.0						
Strength Reduction Factor — Concrete Breakout Failure ²	$\phi_{\scriptscriptstyle CD}$	_						0.65						
Pullout Strength in Ten	sion — A	CI 318-	19 17.6.3	3, ACI 31	8-14 17	.4.3 or A	CI 318-1	1 Section	n D.5.3					
Pullout Resistance, Uncracked Concrete (f' _c = 2,500 psi)	N _{p,uncr}	lb.	3	3	2,7004	3	3	3	3	9,8104	3	3	3	
Pullout Resistance, Cracked Concrete (f'c = 2,500 psi)	N _{p,cr}	lb.	3	1,9054	1,2354	2,7004	3	3	3,0404	5,5704	3	6,0704	7,1954	
Strength Reduction Factor — Pullout Failure ²	$\phi_{ ho}$	_						0.65						
Tension Strength for Seismic App	Tension Strength for Seismic Applications — ACI 318-19 17.10.3, ACI 318-14 17.2.3.3 or ACI 318-11 Section D.3.3.3													
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	N _{p,eq}	lb.	3	1,9054	1,2354	2,7004	3	3	3,0404	5,5704	3,8404	6,0704	7,1954	
Strength Reduction Factor — Pullout Failure ²	ϕ_{eq}	_	— 0.65											

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

^{2.} The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

^{3.} Pullout strength is not reported since concrete breakout controls.

^{4.} Adjust the characteristic pullout resistance for other concrete compressive strengths by multiplying the tabular value by (f^{*}_{c,specified} / 2,500)^{0.5}.

Titen HD® Design Information — Concrete

Titen HD Shear Strength Design Data¹

Characteristic	Symbol	Unit				Non	ninal And	hor Dian	neter, d _a	(in.)			
GlidiaGleriSuG	Syllibul	UIIIL		4	3	/ 8	1,	2	5,	/8		3/4	
Nominal Embedment Depth	h _{nom}	in.	1% 2½		21/2	31/4	31/4	4	4	5½	4	5½	61/4
Steel Strength in	Shear (AC	318-1	9 17.7.1	, ACI 318	3-14 17.5	.1 or ACI	318-11	Section I	0.6.1)				
Shear Resistance of Steel	V _{sa}	lb.	2,020 4,460 7,455 10,000 14,					14,950	4,950 16,840				
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}							0.60					
Concrete Breakout Strer	igth in Sh	ear (AC	318-19	17.7.2 <i>P</i>	CI 318-1	4 17.5.2	or ACI 3	18-11 Se	ction D.6	5.2)			
Outside Diameter	d _a	in.	0.	25	0.0	375	0.5	0.500		325	0.750		
Load Bearing Length of Anchor in Shear	ℓ_e	in.	1.19	1.94	1.77	2.40	2.35	2.99	2.97	4.24	2.94	4.22	4.86
Strength Reduction Factor — Concrete Breakout Failure ²	$\phi_{\it cb}$							0.70					
Concrete Pryout Streng	th in Shea	ar (ACI	318-19 1	7.7.3, A	CI 318-1	4 17.5.3	or ACI 31	8-11 Sed	ction D.6.	.3)			
Coefficient for Pryout Strength	k _{cp}	lb.			1.0					2	2.0		
Strength Reduction Factor — Concrete Pryout Failure ²	ϕ_{cp}	_						0.70					
Steel Strength in Shear for Seisn	nic Applic	ations	(ACI 318-	19 17.10	0.3, ACI 3	318-14 17	7.2.3.3 0	ACI 318	-11 Sect	tion D.3.	3.3)		
Shear Resistance for Seismic Loads	V _{eq}	lb.	lb. 1,695 2,855 4,790 8,000 9,38						9,350				
Strength Reduction Factor — Steel Failure ²	ϕ_{eq}		0.60										

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 and ACI 318-11 Appendix D, except as modified below.
- 2. The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

Titen HD Tension and Shear Strength Design Data for the Soffit of Normal-Weight or Sand-Lightweight Concrete over Steel Deck^{1,6,7}

			Nominal Anchor Diameter, d _a (in.)												
Characteristic	Symbol	Units		Lower Flute						Upper Flute					
GHALACTERSUC	Syllibol	VIIIDOI OIIILS		yiiiboi oiiits		Figure 2			Figu	ire 1		Figu	ıre 2	Figu	ire 1
			1	/4	3,	%	1	/2	1	/4	3/8	1/2			
Nominal Embedment Depth	h _{nom}	in.	1%	2½	1 1/8	2½	2	3½	1%	21/2	1 1/8	2			
Effective Embedment Depth	h _{ef}	in.	1.19	1.94	1.23	1.77	1.29	2.56	1.19	1.94	1.23	1.29			
Pullout Resistance, concrete on steel deck (cracked) ^{2,3,4}	N _{p,deck,cr}	lb.	420	535	375	870	905	2,040	655	1,195	500	1,700			
Pullout Resistance, concrete on steel deck (uncracked) ^{2,3,4}	N _{p,deck,uncr}	lb.	995	1,275	825	1,905	1,295	2,910	1,555	2,850	1,095	2,430			
Steel Strength in Shear, concrete on steel deck ⁵	V _{sa, deck}	lb.	1,335	1,745	2,240	2,395	2,435	4,430	2,010	2,420	4,180	7,145			
Steel Strength in Shear, Seismic	V _{sa, deck,eq}	lb.	870	1,135	1,434	1,533	1,565	2,846	1,305	1,575	2,676	4,591			

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 and ACI 318-11 Appendix D, except as modified below.
- Concrete compressive strength shall be 3,000 psi minimum. The characteristic pullout resistance for greater compressive strengths shall be increased by multiplying the tabular value by (f'_{c,specified}/3,000)^{0.5}.
- 3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies, as shown in Figure 1 and Figure 2, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318-19 Section 17.6.3.2.1, ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies $N_{p,deck,cr}$ shall be substituted for $N_{p,cr}$. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete $N_{p,deck,uncr}$ shall be substituted for $N_{p,uncr}$.
- 5. In accordance with ACI 318-19 Section 17.7.1.2(c), ACI 318-14 Section 17.5.1.2(c) or ACI 318-11 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies V_{sa,deck} and V_{sa,deck,eq} shall be substituted for V_{sa}.
- 6. Minimum edge distance to edge of panel is 2hef.
- 7. The minimum anchor spacing along the flute must be the greater of $3h_{\rm ef}$, or 1.5 times the flute width.

Titen HD® Design Information — Concrete

Titen HD Anchor Tension and Shear Strength Design Data in the Topside of Normal-Weight Concrete or Sand-Lightweight Concrete over Steel Deck^{1,2,3,4}

1	IDO	1	→	7
	IRC	20 20	20 20	~~

			Nominal Anchor Diameter, d _a (in.)							
Design Information	Symbol	Units		Figu	ire 3					
			1/4	3%	1	/2				
Nominal Embedment Depth	h _{nom}	in.	1%	21/2	31/4	4				
Effective Embedment Depth	h _{ef}	in.	1.19	1.77	2.35	2.99				
Minimum Concrete Thickness ⁵	h _{min,deck}	in.	2½	31/4	41/2	41/2				
Critical Edge Distance	Cac,deck,top	in.	3¾	71/4	9	9				
Minimum Edge Distance	C _{min,deck,top}	in.	3½	3	21/2	21/2				
Minimum Spacing	S _{min,deck,top}	in.	3½	3	3	3				

- 1. For anchors installed in the topside of concrete-filled deck assemblies, as shown in Figure 3, the nominal concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg} , respectively, must be calculated in accordance with ACI 318-19 Section 17.7.2, ACI 318-14 Section 17.5.2 or ACI 318-11 Section D.6.2, using the actual member thickness, $h_{min,deck}$, in the determination of A_{vc} .
- 2. Design capacity shall be based on calculations according to values in the tables featured on pp. 69 and 70.
- 3. Minimum flute depth (distance from top of flute to bottom of flute) is 11/2" (see Figure 3).
- 4. Steel deck thickness shall be minimum 20 gauge.
- 5. Minimum concrete thickness ($h_{min,deck}$) refers to concrete thickness above upper flute (see Figure 3).

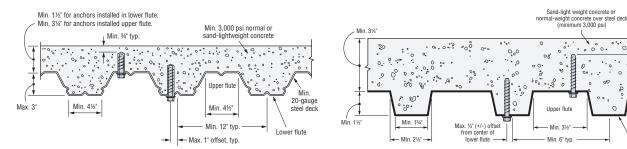


Figure 1. Installation of %"- and ½"-Diameter Anchors in the Soffit of Concrete over Steel Deck

Figure 2. Installation of 1/4"-Diameter Anchors in the Soffit of Concrete over Steel Deck

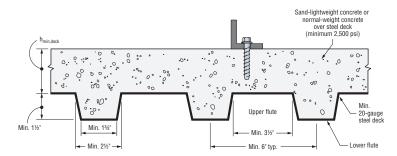


Figure 3. Installation of 1/4"- and %"-Diameter Anchors in the Topside of Concrete over Steel Deck

Titen HD Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU

IBC	1	→	*
	250 250	250 850	

Cina	Drill Bit	Minimum	Critical Edge	Minimum Edge	Critical	Va	Values for 8" Lightweight, Medium-Weight or Normal-Weight Grout-Filled CMU						
Size in. (mm)	Drill Bit Diameter in.	Embedment Depth in.	Distance C _{crit}	Distance C _{min}	Spacing Distance in.	Tensio	n Load	Shear	Load				
(111111)	"".	(mm)	in. (mm)	in. (mm)	(mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)				
			Ancho	or Installed in t	he Face of the	CMU Wall (See Fig	ure 4)						
1/4 (6.4)	1/4	2½ (64)	4 (102)	11/4 (32)	4 (102)	2,050 (9.1)	410 (1.8)	2,500 (11.1)	500 (2.2)				
3/8 (9.5)	3/8	2¾ (70)	12 (305)	4 (102)	6 (152)	2,390 (10.6)	480 (2.1)	4,340 (19.3)	870 (3.9)				
½ (12.7)	1/2	3½ (89)	12 (305)	4 (102)	8 (203)	3,440 (15.3)	690 (3.1)	6,920 (30.8)	1,385 (6.2)				
5/8 (15.9)	5/8	4½ (114)	12 (305)	4 (102)	10 (254)	5,300 (23.6)	1,060 (4.7)	10,420 (46.4)	2,085 (9.3)				
3/4 (19.1)	3/4	5½ (140)	12 (305)	4 (102)	12 (305)	7,990 (35.5)	1,600 (7.1)	15,000 (66.7)	3,000 (13.3)				

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The masonry units must be fully grouted.
- 4. The minimum specified compressive strength of masonry, $f'_{\it m}$, at 28 days is 1,500 psi.
- 5. Embedment depth is measured from the outside face of the concrete masonry unit.
- 6. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
- 7. Refer to allowable load-adjustment factors for spacing and edge distance on pp. 78-79.

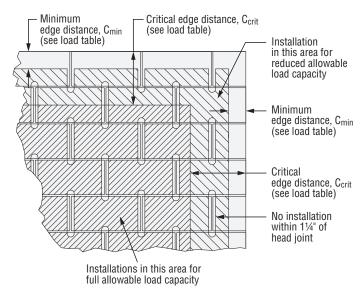
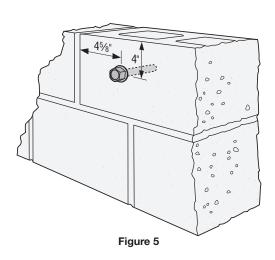


Figure 4. Shaded Area = Placement for Full and Reduced Allowable Load Capacity in Grout-Filled CMU



Titen HD Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Hollow CMU

0:	D.:II Dia	Embedment	Minimum	8" Hollow CMU Loads Based on CMU Strength							
Size in. (mm)	Drill Bit Diameter in.	Depth⁴ in.	Edge Distance in.	Tensio	n Load	Shear	Load				
(111111)		(mm)	(mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)				
		And	hor Installed in Fac	ce Shell (See Figur	e 5)						
3/8 (9.5)	3/8	13/4 (45)	4 (102)	720 (3.2)	145 (0.6)	1,240 (5.5)	250 (1.1)				
½ (12.7)	1/2	1¾ (45)	4 (102)	760 (3.4)	150 (0.7)	1,240 (5.5)	250 (1.1)				
5% (15.9)	5%	13/4 (45)	4 (102)	800 (3.6)	160 (0.7)	1,240 (5.5)	250 (1.1)				
3/4 (19.1)	3/4	13/4 (45)	4 (102)	880 (3.9)	175 (0.8)	1,240 (5.5)	250 (1.1)				

- The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC. Note: No installation within 4%" of bed joint of hollow masonry block wall.
- 2. Values for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The minimum specified compressive strength of masonry, f'_{m} , at 28 days is 1,500 psi.
- 4. Embedment depth is measured from the outside face of the concrete masonry unit and is based on the anchor being embedded an additional $\frac{1}{2}$ "- through $\frac{1}{4}$ "-thick face shell.
- 5. Allowable loads may not be increased for short-term loading due to wind or seismic forces.
- 6. CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
- 7. Do not use impact wrenches to install in hollow CMU.
- 8. Set drill to rotation-only mode when drilling into hollow CMU.
- 9. The tabulated allowable loads are based on one anchor installed in a single cell.
- 10. Distance from centerline of anchor to head joint shall be a minimum of $4\%\mbox{"}.$

Titen HD Allowable Tension and Shear Loads in

8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU Stemwall

		Embed.	Minimum	Minimum									Critical	8" Gro	ut-Filled CMU Al	lowable Loads E	Based on CMU St	trength, $f'_m = 1$,	500 psi
Size in.	Size Drill Bit Depth Edge End			End Distance	Spacing Distance	Ten	sion	Shear Perpend	dicular to Edge	Shear Para	llel to Edge								
(mm)	in.	in. (mm)	in. (mm)	in. (mm)	in. (mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)								
	Anchor Installed in Cell Opening or Web (Top of Wall) (See Figure 6)																		
½ (12.7)	1/2	4½ (114)	13/4 (45)	8 (203)	8 (203)	2,860 (12.7)	570 (2.5)	800 (3.6)	160 (0.7)	2,920 (13.0)	585 (2.6)								
5/8 (15.9)	5/8	4½ (114)	13/4 (45)	10 (254)	10 (254)	2,860 (12.7)	570 (2.5)	800 (3.6)	160 (0.7)	3,380 (15.0)	675 (3.0)								

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values are for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The masonry units must be fully grouted.
- 4. The minimum specified compressive strength of masonry, f'm, at 28 days is 1,500 psi.
- 5. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied design loads.
- 6. Loads are based on anchor installed in either the web or grout-filled cell opening in the top of wall.

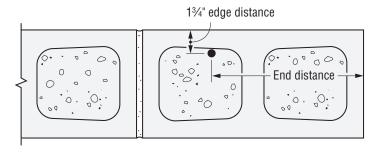


Figure 6.
Anchor Installed in Top of Wall at 134" Edge Distance

Titen HD Allowable Tension and Shear Loads in 8" Medium-Weight and Normal-Weight Grout-Filled CMU Stemwall

		Embed.	Minimum	Minimum	Critical											
Size in.	Drill Bit Diameter	Depth	Edge Distance	End Distance			End Distance	Spacing e Distance	Ten	sion	Shear Perpend	dicular to Edge	Shear Para	llel to Edge		
(mm)	in.	in. (mm)	in. (mm)	in. (mm)	in. (mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)					
	Anchor Installed in Cell Opening (Top of Wall) (See Figure 7)															
½ (12.7)	1/2	41/2	3	12	12	5,800	1,160	2,750	550	7,500	1,500					
5% (15.9)	5/8	(114)	(76)	(305)	(305)	(25.8)	(5.2)	(12.2)	(2.5)	(33.4)	(6.7)					

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values are for 8"-wide, medium-weight and normal-weight concrete masonry units.
- 3. The masonry units must be fully grouted.
- 4. The minimum specified compressive strength of masonry, $\mathbf{f}'_{\textit{m}}$, at 28 days is 2,000 psi.
- 5. Allowable loads are not permitted to be increased for short-term loading due to wind or seismic forces.
- 6. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied design loads.
- 7. Loads are based on anchor installed in grout-filled cell opening in the top of wall.

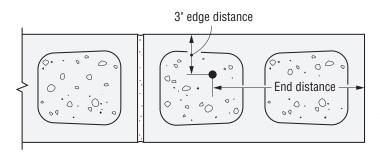


Figure 7.
Anchor Installed in Top of Wall at 3" Edge Distance

Strong-Ti

Titen HD Allowable Tension and Shear Loads in End of 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU Wall

_		
Г	/==/=	*
Ш		
Ш		
ш	\perp	

c: Drill Bit	Embedment	Minimum	Minimum	Minimum	Allowable Loads			
Size (in.)	Dilli Bit Diameter (in.)	Depth (in.)	Edge Distance (in.)	End Distance (in.)	Spacing (in.)	Tension (lbf)	Shear Vertical (lbf)	Shear Horizontal (lbf)
1/4	1/4	2%	313/16	13⁄4	4	310	215	375
3/8	3/8	23/8	313/16	13⁄4	6	335	215	375

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values are for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The masonry units must be fully grouted.
- 4. The minimum specified compressive strength of masonry, $\mathbf{f'}_m$, at 28 days is 2,000 psi.
- 5. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied design loads.
- 6. Minimum edge and end distances are measured from anchor centerline to the edge and end of the CMU masonry wall, respectively. Refer to Figure 8 below.

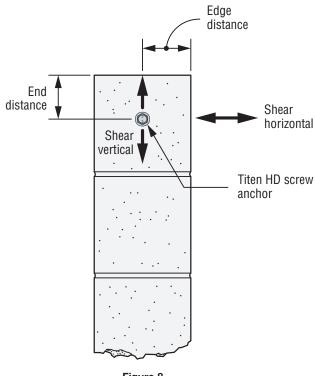


Figure 8. Anchor Installed in End of Grout-Filled CMU Wall

Titen HD Allowable Tension and Shear Loads in End of 8" Lightweight, Medium-Weight and Normal-Weight Hollow CMU Wall

	Drill Bit	Embedment Minimum	Minimum	Minimum	Allowable Loads			
Size (in.)	Dilli Bit Diameter (in.)	Depth (in.)	Edge Distance (in.)	End Distance (in.)	Spacing (in.)	Tension (lbf)	Shear Vertical (lbf)	Shear Horizontal (lbf)
1/4	1/4	2%	313/16	13⁄4	4	130	105	120
3/8	3/8	2%	313/16	13⁄4	6	130	115	125

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The minimum specified compressive strength of masonry, f'_m , at 28 days is 2,000 psi.
- 4. Embedment depth is measured from the outside face of the concrete masonry unit and is based on the anchor being embedded an additional 1 ½"- through 1 ½"-thick face shell.
- 5. Allowable loads may not be increased for short-term loading due to wind or seismic forces.
- 6. CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
- 7. Do not use impact wrenches to install in hollow CMU.
- 8. Set drill to rotation-only mode when drilling into hollow CMU.
- 9. Minimum edge and end distances are measured from anchor centerline to the edge and end of the CMU masonry wall, respectively. Refer to Figure 9 below.
- 10. Anchors must be installed a minimum of 11/2" from centerlie of bed joints. See Figure 9 for prohibited anchor installation locations.

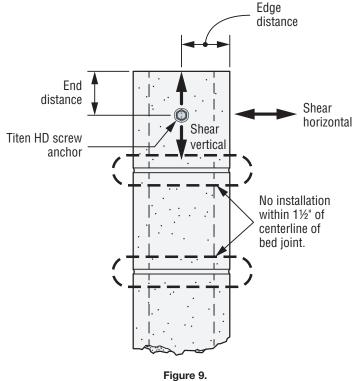
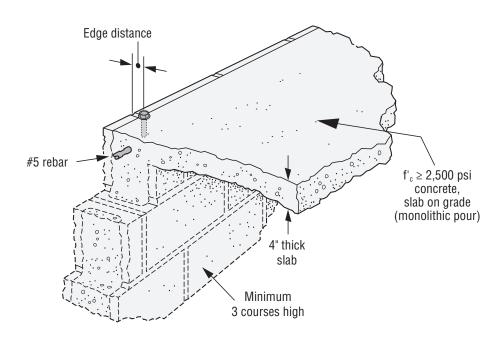


Figure 9.
Anchor Installed in
End of Hollow CMU Wall



Titen HD Allowable Tension Loads for 8" Lightweight, Medium-Weight and Normal-Weight CMU Chair Blocks Filled with Normal-Weight Concrete

		Г
I BAT :		
	100	
	6574 6538	ı

Size	Drill Bit	Minimum Embedment			8" Concrete-Filled CMU Chair Block Allowable Tension Loads Based on CMU Strength		
in. (mm)	Diameter (in.)	Depth in. (mm)	Distance in. (mm)	Spacing in. (mm)	Ultimate lb. (kN)	Allowable lb. (kN)	
3 % (9.5)		2 % (60)	13/4 (44)	9½ (241)	3,175 (14.1)	635 (2.8)	
	3/8	3 % (86)	13/4 (44)	13½ (343)	5,175 (23.0)	1,035 (4.6)	
		5 (127)	21/4 (57)	20 (508)	10,584 (47.1)	2,115 (9.4)	
1/2	1/2	8 (203)	21/4 (57)	32 (813)	13,722 (61.0)	2,754 (12.2)	
(12.7)		10 (254)	21/4 (57)	40 (1016)	16,630 (74.0)	3,325 (14.8)	
5/8 (15.9)	5/8	5½ (140)	13/4 (44)	22 (559)	9,025 (40.1)	1,805 (8.1)	

- 1. The tabulated allowable loads are based on a safety factor of 5.0.
- 2. Values are for 8"-wide concrete masonry units (CMU) filled with concrete, with minimum compressive strength of 2,500 psi and poured monolithically with the floor slab.
- 3. Center #5 rebar in CMU cell and concrete slab as shown in the illustration below.

Load-Adjustment Factors for Titen HD Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

Mechanical Anchors

- 1. The following tables are for reduced edge distance and spacing.
- Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.
- 5. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

Edae	Distance	Tension	(f_{c})

	Dia.	1/4	3/8	1/2	5/8	3/4
	E	21/2	23/4	31/2	41/2	5½
c _{act} (in.)	C _{Cr}	4	12	12	12	12
(111.)	C _{min}	1.25	4	4	4	4
	f _{cmin}	0.77	1.00	1.00	0.83	0.66
1.25		0.77				
2		0.83				
3		0.92				
4		1.00	1.00	1.00	0.83	0.66
6		1.00	1.00	1.00	0.87	0.75
8		1.00	1.00	1.00	0.92	0.83
10		1.00	1.00	1.00	0.96	0.92
12		1.00	1.00	1.00	1.00	1.00

See footnotes below.

Edge Distance Shear (f_c) Shear Load Parallel to Edge or End

nioai Loc	riodi Eodd i didiloi to Edgo oi End							
	Dia.	1/4	3/8	1/2	5/8	3/4		
	E	21/2	2¾	31/2	41/2	51/2		
c _{act} (in.)	C _{cr}	4	12	12	12	12		
()	C _{min}	1.25	4	4	4	4		
	f _{cmin}	0.58	0.77	0.48	0.46	0.44		
1.25		0.58						
2		0.69						
3		0.85						
4		1.00	0.77	0.48	0.46	0.44		
6		1.00	0.83	0.61	0.60	0.58		
8		1.00	0.89	0.74	0.73	0.72		
10		1.00	0.94	0.87	0.87	0.86		

1.00

1.00

1.00

See footnotes below.

Edge Distance Shear (f_c) Shear Load Perpendicular to Edge or End (Directed Towards Edge or End)

1.00

	Dia.	1/4	3/8	1/2	5/8	3/4
	E	21/2	2¾	31/2	4 1/2	5 1/2
c _{act} (in.)	C _{Cr}	4	12	12	12	12
()	C _{min}	1.25	4	4	4	4
	f _{cmin}	0.71	0.58	0.38	0.30	0.21
1.25		0.71				
2		0.79				
3		0.89				
4		1.00	0.58	0.38	0.30	0.21
6		1.00	0.69	0.54	0.48	0.41
8		1.00	0.79	0.69	0.65	0.61
10		1.00	0.90	0.85	0.83	0.80
12		1.00	1.00	1.00	1.00	1.00

- 1. E = embedment depth (inches).
- 2. cact = actual end or edge distance at which anchor is installed (inches).
- 3. c_{cr} = critical end or edge distance for 100% load (inches).
- 4. c_{min} = minimum end or edge distance for reduced load (inches).
- $5.\,f_{\text{C}}\!=\!$ adjustment factor for allowable load at actual end or edge distance.
- $6.\,f_{CCT}$ = adjustment factor for allowable load at critical end or edge distance. f_{CCT} is always = 1.00.
- $7.f_{Cmin}$ = adjustment factor for allowable load at minimum end or edge distance.
- 8. $f_c = f_{cmin} + [(1 f_{cmin}) (c_{act} c_{min}) / (c_{cr} c_{min})].$

Load-Adjustment Factors for Titen HD Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads (cont.)

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.
- 5. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

Edge Distance Shear (f_c) Shear Load Perpendicular to Edge or End (Directed Away from Edge or End)

IBC		

	Dia.	1/4	3/8	1/2	5/8	3/4
_	E	21/2	2¾	31/2	4 1/2	51/2
c _{act} (in.)	C _{Cr}	4	12	12	12	12
()	C _{min}	1.25	4	4	4	4
	f _{cmin}	0.71	0.89	0.79	0.58	0.38
1.25		0.71				
2		0.79				
3		0.89				
4		1.00	0.89	0.79	0.58	0.38
6		1.00	0.92	0.84	0.69	0.54
8		1.00	0.95	0.90	0.79	0.69
10		1.00	0.97	0.95	0.90	0.85
12		1.00	1.00	1.00	1.00	1.00

Spacing Tension (f_s)

IBC 1		,
5/8	3/4	
4 1/2	51/2	

s _{act} (in.)	Dia.	1/4	3/8	1/2	5/8	3/4
	E	21/2	2¾	31/2	4 1/2	5 1/2
	S _{Cr}	4	6	8	10	12
	Smin	2	3	4	5	6
	f _{smin}	0.66	0.87	0.69	0.59	0.50
2		0.66				
3		0.83	0.87			
4		1.00	0.91	0.69		
5			0.96	0.77	0.59	
6			1.00	0.85	0.67	0.50
8				1.00	0.84	0.67
10					1.00	0.83
12						1.00

Spacing Shear (f_s)

s _{act} (in.)	Dia.	1/4	3/8	1/2	5/8	3/4
	E	21/2	2¾	3 1/2	4 1/2	5 1/2
	S _{Cr}	4	6	8	10	12
	S _{min}	2	3	4	5	6
	f _{smin}	0.87	0.62	0.62	0.62	0.62
2		0.87				
3		0.93	0.62			
4		1.00	0.75	0.62		
5			0.87	0.72	0.62	
6			1.00	0.81	0.70	0.62
8				1.00	0.85	0.75
10					1.00	0.87
12						1.00

^{1.} E = embedment depth (inches).

 $^{2.} s_{act}$ = actual spacing distance at which anchors are installed (inches).

^{3.} s_{cr} = critical spacing distance for 100% load (inches).

^{4.} s_{min} = minimum spacing distance for reduced load (inches).

 $^{5.} f_s = \text{adjustment factor for allowable load at actual spacing distance.}$

^{6.} f_{SCr} = adjustment factor for allowable load at critical spacing distance. f_{SCr} is always = 1.00.

^{7.} f_{smin} = adjustment factor for allowable load at minimum spacing distance.

^{8.} $f_s = f_{smin} + [(1 - f_{smin}) (s_{act} - s_{min}) / (s_{cr} - s_{min})].$